Gonul Ayci, Murat Sensoy, Arzucan Özgür, Pinar Yolum
{"title":"Uncertainty-Aware Personal Assistant for Making Personalized Privacy Decisions","authors":"Gonul Ayci, Murat Sensoy, Arzucan Özgür, Pinar Yolum","doi":"https://dl.acm.org/doi/10.1145/3561820","DOIUrl":null,"url":null,"abstract":"<p>Many software systems, such as online social networks, enable users to share information about themselves. Although the action of sharing is simple, it requires an elaborate thought process on privacy: what to share, with whom to share, and for what purposes. Thinking about these for each piece of content to be shared is tedious. Recent approaches to tackle this problem build personal assistants that can help users by learning what is private over time and recommending privacy labels such as private or public to individual content that a user considers sharing. However, privacy is inherently <i>ambiguous</i> and highly <i>personal</i>. Existing approaches to recommend privacy decisions do not address these aspects of privacy sufficiently. Ideally, a personal assistant should be able to adjust its recommendation based on a given user, considering that user’s privacy understanding. Moreover, the personal assistant should be able to assess when its recommendation would be uncertain and let the user make the decision on her own. Accordingly, this article proposes a personal assistant that uses evidential deep learning to classify content based on its privacy label. An important characteristic of the personal assistant is that it can model its uncertainty in its decisions explicitly, determine that it does not know the answer, and delegate from making a recommendation when its uncertainty is high. By factoring in the user’s own understanding of privacy, such as risk factors or own labels, the personal assistant can personalize its recommendations per user. We evaluate our proposed personal assistant using a well-known dataset. Our results show that our personal assistant can accurately identify uncertain cases, personalize them to its user’s needs, and thus helps users preserve their privacy well.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"72 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3561820","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Many software systems, such as online social networks, enable users to share information about themselves. Although the action of sharing is simple, it requires an elaborate thought process on privacy: what to share, with whom to share, and for what purposes. Thinking about these for each piece of content to be shared is tedious. Recent approaches to tackle this problem build personal assistants that can help users by learning what is private over time and recommending privacy labels such as private or public to individual content that a user considers sharing. However, privacy is inherently ambiguous and highly personal. Existing approaches to recommend privacy decisions do not address these aspects of privacy sufficiently. Ideally, a personal assistant should be able to adjust its recommendation based on a given user, considering that user’s privacy understanding. Moreover, the personal assistant should be able to assess when its recommendation would be uncertain and let the user make the decision on her own. Accordingly, this article proposes a personal assistant that uses evidential deep learning to classify content based on its privacy label. An important characteristic of the personal assistant is that it can model its uncertainty in its decisions explicitly, determine that it does not know the answer, and delegate from making a recommendation when its uncertainty is high. By factoring in the user’s own understanding of privacy, such as risk factors or own labels, the personal assistant can personalize its recommendations per user. We evaluate our proposed personal assistant using a well-known dataset. Our results show that our personal assistant can accurately identify uncertain cases, personalize them to its user’s needs, and thus helps users preserve their privacy well.
期刊介绍:
ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.