Man Zeng, Dandan Li, Pei Zhang, Kun Xie, Xiaohong Huang
{"title":"Federated Route Leak Detection in Inter-domain Routing with Privacy Guarantee","authors":"Man Zeng, Dandan Li, Pei Zhang, Kun Xie, Xiaohong Huang","doi":"https://dl.acm.org/doi/10.1145/3561051","DOIUrl":null,"url":null,"abstract":"<p>In the inter-domain network, route leaks can disrupt the Internet traffic and cause large outages. The accurate detection of route leaks requires the sharing of AS business relationship information. However, the business relationship information between ASes is confidential. ASes are usually unwilling to reveal this information to the other ASes, especially their competitors. In this paper, we propose a method named FL-RLD to detect route leaks while maintaining the privacy of business relationships between ASes by using a blockchain-based federated learning framework, where ASes can collaboratively train a global detection model without directly disclosing their specific business relationships. To mitigate the lack of ground-truth validation data in route leaks, FL-RLD provides a self-validation scheme by labeling AS triples with local routing policies. We evaluate FL-RLD under a variety of datasets including imbalanced and balanced datasets, and examine different deployment strategies of FL-RLD under different topologies. According to the results, FL-RLD performs better in detecting route leaks than the single AS detection, whether the datasets are balanced or imbalanced. Additionally, the results indicate that selecting ASes with the most peers to first deploy FL-RLD brings more significant benefits in detecting route leaks than selecting ASes with the most providers and customers.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"9 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3561051","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the inter-domain network, route leaks can disrupt the Internet traffic and cause large outages. The accurate detection of route leaks requires the sharing of AS business relationship information. However, the business relationship information between ASes is confidential. ASes are usually unwilling to reveal this information to the other ASes, especially their competitors. In this paper, we propose a method named FL-RLD to detect route leaks while maintaining the privacy of business relationships between ASes by using a blockchain-based federated learning framework, where ASes can collaboratively train a global detection model without directly disclosing their specific business relationships. To mitigate the lack of ground-truth validation data in route leaks, FL-RLD provides a self-validation scheme by labeling AS triples with local routing policies. We evaluate FL-RLD under a variety of datasets including imbalanced and balanced datasets, and examine different deployment strategies of FL-RLD under different topologies. According to the results, FL-RLD performs better in detecting route leaks than the single AS detection, whether the datasets are balanced or imbalanced. Additionally, the results indicate that selecting ASes with the most peers to first deploy FL-RLD brings more significant benefits in detecting route leaks than selecting ASes with the most providers and customers.
期刊介绍:
ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.