AI-based analysis of super-resolution microscopy: Biological discovery in the absence of ground truth

Ivan R. Nabi, Ben Cardoen, Ismail M. Khater, Guang Gao, Timothy H. Wong, Ghassan Hamarneh
{"title":"AI-based analysis of super-resolution microscopy: Biological discovery in the absence of ground truth","authors":"Ivan R. Nabi, Ben Cardoen, Ismail M. Khater, Guang Gao, Timothy H. Wong, Ghassan Hamarneh","doi":"arxiv-2305.17193","DOIUrl":null,"url":null,"abstract":"The nanoscale resolution of super-resolution microscopy has now enabled the\nuse of fluorescent based molecular localization tools to study whole cell\nstructural biology. Machine learning based analysis of super-resolution data\noffers tremendous potential for discovery of new biology, that by definition is\nnot known and lacks ground truth. Herein, we describe the application of weakly\nsupervised learning paradigms to super-resolution microscopy and its potential\nto enable the accelerated exploration of the molecular architecture of\nsubcellular macromolecules and organelles.","PeriodicalId":501170,"journal":{"name":"arXiv - QuanBio - Subcellular Processes","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Subcellular Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2305.17193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The nanoscale resolution of super-resolution microscopy has now enabled the use of fluorescent based molecular localization tools to study whole cell structural biology. Machine learning based analysis of super-resolution data offers tremendous potential for discovery of new biology, that by definition is not known and lacks ground truth. Herein, we describe the application of weakly supervised learning paradigms to super-resolution microscopy and its potential to enable the accelerated exploration of the molecular architecture of subcellular macromolecules and organelles.
基于人工智能的超分辨率显微镜分析:在缺乏基本事实的情况下的生物学发现
超分辨率显微镜的纳米级分辨率使得基于荧光的分子定位工具能够研究整个细胞结构生物学。基于机器学习的超分辨率数据分析为发现新的生物学提供了巨大的潜力,根据定义,这些生物学是未知的,缺乏基础真理。在这里,我们描述了弱监督学习范式在超分辨率显微镜中的应用,以及它在加速探索亚细胞大分子和细胞器分子结构方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信