A radial basis function (RBF)-finite difference method for solving improved Boussinesq model with error estimation and description of solitary waves

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mostafa Abbaszadeh, AliReza Bagheri Salec, Taghreed Abdul-Kareem Hatim Aal-Ezirej
{"title":"A radial basis function (RBF)-finite difference method for solving improved Boussinesq model with error estimation and description of solitary waves","authors":"Mostafa Abbaszadeh, AliReza Bagheri Salec, Taghreed Abdul-Kareem Hatim Aal-Ezirej","doi":"10.1002/num.23077","DOIUrl":null,"url":null,"abstract":"The Boussinesq equation has some application in fluid dynamics, water sciences and so forth. In the current paper, we study an improved Boussinesq model. First, a finite difference approximation is employed to discrete the derivative of the temporal variable. Then, we study the existence and uniqueness of solution of the semi-discrete scheme according to the fixed point theorem. In addition, the unconditional stability and convergence of the semi-discrete scheme are presented. Then, we construct the fully discrete formulation based upon the radial basis function-finite difference method. The convergence rate and stability of the fully-discrete scheme are analyzed. In the end, some examples in 1D and 2D cases are studied to corroborate the capability of the proposed scheme.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The Boussinesq equation has some application in fluid dynamics, water sciences and so forth. In the current paper, we study an improved Boussinesq model. First, a finite difference approximation is employed to discrete the derivative of the temporal variable. Then, we study the existence and uniqueness of solution of the semi-discrete scheme according to the fixed point theorem. In addition, the unconditional stability and convergence of the semi-discrete scheme are presented. Then, we construct the fully discrete formulation based upon the radial basis function-finite difference method. The convergence rate and stability of the fully-discrete scheme are analyzed. In the end, some examples in 1D and 2D cases are studied to corroborate the capability of the proposed scheme.
径向基函数-有限差分法求解具有误差估计和孤立波描述的改进Boussinesq模型
Boussinesq方程在流体力学、水科学等方面有一定的应用。本文研究了一种改进的Boussinesq模型。首先,采用有限差分近似对时间变量的导数进行离散。然后,根据不动点定理,研究了半离散格式解的存在唯一性。此外,还给出了半离散格式的无条件稳定性和收敛性。然后,基于径向基函数-有限差分法构造了全离散公式。分析了全离散格式的收敛速度和稳定性。最后,通过一维和二维实例验证了所提方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信