Some inequalities for self-mappings of unit ball satisfying the invariant Laplacians

Deguang Zhong, Meilan Huang, Dongping Wei
{"title":"Some inequalities for self-mappings of unit ball satisfying the invariant Laplacians","authors":"Deguang Zhong, Meilan Huang, Dongping Wei","doi":"10.1007/s00605-023-01925-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study those mappings in unit ball satisfying the Dirichlet problem of the following differential operators </p><span>$$\\begin{aligned} \\Delta _{\\gamma }=\\big (1-|x|^{2}\\big )\\cdot \\left[ \\frac{1-|x|^{2}}{4}\\cdot \\sum _{i}\\frac{\\partial ^{2}}{\\partial x_{i}^{2}}+\\gamma \\sum _{i}x_{i}\\cdot \\frac{\\partial }{\\partial x_{i}}+\\gamma \\left( \\frac{n}{2}-1-\\gamma \\right) \\right] . \\end{aligned}$$</span><p>Our aim is to establish the Schwarz type inequality, Heinz-Schwarz type inequality and boundary Schwarz inequality for those mappings.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01925-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we study those mappings in unit ball satisfying the Dirichlet problem of the following differential operators

$$\begin{aligned} \Delta _{\gamma }=\big (1-|x|^{2}\big )\cdot \left[ \frac{1-|x|^{2}}{4}\cdot \sum _{i}\frac{\partial ^{2}}{\partial x_{i}^{2}}+\gamma \sum _{i}x_{i}\cdot \frac{\partial }{\partial x_{i}}+\gamma \left( \frac{n}{2}-1-\gamma \right) \right] . \end{aligned}$$

Our aim is to establish the Schwarz type inequality, Heinz-Schwarz type inequality and boundary Schwarz inequality for those mappings.

满足不变拉普拉斯算子的单位球自映射的若干不等式
本文研究了单位球上满足以下微分算子Dirichlet问题的映射$$\begin{aligned} \Delta _{\gamma }=\big (1-|x|^{2}\big )\cdot \left[ \frac{1-|x|^{2}}{4}\cdot \sum _{i}\frac{\partial ^{2}}{\partial x_{i}^{2}}+\gamma \sum _{i}x_{i}\cdot \frac{\partial }{\partial x_{i}}+\gamma \left( \frac{n}{2}-1-\gamma \right) \right] . \end{aligned}$$,目的是建立这些映射的Schwarz型不等式、Heinz-Schwarz型不等式和边界Schwarz不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信