{"title":"Some inequalities for self-mappings of unit ball satisfying the invariant Laplacians","authors":"Deguang Zhong, Meilan Huang, Dongping Wei","doi":"10.1007/s00605-023-01925-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study those mappings in unit ball satisfying the Dirichlet problem of the following differential operators </p><span>$$\\begin{aligned} \\Delta _{\\gamma }=\\big (1-|x|^{2}\\big )\\cdot \\left[ \\frac{1-|x|^{2}}{4}\\cdot \\sum _{i}\\frac{\\partial ^{2}}{\\partial x_{i}^{2}}+\\gamma \\sum _{i}x_{i}\\cdot \\frac{\\partial }{\\partial x_{i}}+\\gamma \\left( \\frac{n}{2}-1-\\gamma \\right) \\right] . \\end{aligned}$$</span><p>Our aim is to establish the Schwarz type inequality, Heinz-Schwarz type inequality and boundary Schwarz inequality for those mappings.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-023-01925-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we study those mappings in unit ball satisfying the Dirichlet problem of the following differential operators