{"title":"Characterizing the Madden–Julian Oscillation in the western Pacific Ocean from a regional coupled ocean–atmosphere model simulation","authors":"Vasubandhu Misra, C. B. Jayasankar","doi":"10.1002/qj.4620","DOIUrl":null,"url":null,"abstract":"This study reports on the analysis of the results from a 20 km grid spacing, Regional Coupled ocean–atmosphere Model (RCM) integration over the Western Pacific Warm Pool (WP2). The RCM was integrated over a 20-year period (1986–2005) using reanalysis boundary conditions for the atmosphere and the ocean. This is a first-of-a-kind study with an RCM at 20 km over the WP2. The RCM simulation shows reasonable fidelity of the mean state and of the Madden–Julian Oscillation (MJO). We utilize this successful integration of the RCM to understand a well-known observed feature of MJOs in the WP2 to be of the strongest amplitude during the December–March period of the year. Our analysis of the model integration reveals that the recharge of moist static energy (MSE) prior to peak MJO convection and its discharge during and after the convection explains the MJO in the simulation. The recharge/discharge of the MSE is shown to be largely dictated by horizontal advection, which is stemmed to a small extent by column-integrated radiative heating and surface evaporation. This balance of forces in the evolution of the MSE anomalies and their corresponding variations with sea-surface temperature (SST) anomalies at MJO time-scales in the WP2 is strongest in the December–March period in the RCM simulation.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":"222 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4620","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study reports on the analysis of the results from a 20 km grid spacing, Regional Coupled ocean–atmosphere Model (RCM) integration over the Western Pacific Warm Pool (WP2). The RCM was integrated over a 20-year period (1986–2005) using reanalysis boundary conditions for the atmosphere and the ocean. This is a first-of-a-kind study with an RCM at 20 km over the WP2. The RCM simulation shows reasonable fidelity of the mean state and of the Madden–Julian Oscillation (MJO). We utilize this successful integration of the RCM to understand a well-known observed feature of MJOs in the WP2 to be of the strongest amplitude during the December–March period of the year. Our analysis of the model integration reveals that the recharge of moist static energy (MSE) prior to peak MJO convection and its discharge during and after the convection explains the MJO in the simulation. The recharge/discharge of the MSE is shown to be largely dictated by horizontal advection, which is stemmed to a small extent by column-integrated radiative heating and surface evaporation. This balance of forces in the evolution of the MSE anomalies and their corresponding variations with sea-surface temperature (SST) anomalies at MJO time-scales in the WP2 is strongest in the December–March period in the RCM simulation.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.