Some Criteria of Capacitive Type of a Noncompact Riemannian Manifold

IF 0.2 Q4 MATHEMATICS
T. R. Igonina, V. M. Keselman, O. R. Paraskevopulo
{"title":"Some Criteria of Capacitive Type of a Noncompact Riemannian Manifold","authors":"T. R. Igonina, V. M. Keselman, O. R. Paraskevopulo","doi":"10.3103/s0027132222020036","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A fairly general concept of an integral capacity on a Riemannian manifold is considered, which includes the concepts of capacity known for the geometric theory of functions such as the classical and conformal capacities. In terms of this general capacity, as in the case of the classical capacity, the concept of capacitive type of Riemannian manifold is defined. In this paper, we present some integral criteria of the capacitive type of a non-compact Riemannian manifold, which complement and, in certain cases, strengthen the known criteria of the classical capacitive type of a Riemannian manifold.</p>","PeriodicalId":42963,"journal":{"name":"Moscow University Mathematics Bulletin","volume":"2 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0027132222020036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A fairly general concept of an integral capacity on a Riemannian manifold is considered, which includes the concepts of capacity known for the geometric theory of functions such as the classical and conformal capacities. In terms of this general capacity, as in the case of the classical capacity, the concept of capacitive type of Riemannian manifold is defined. In this paper, we present some integral criteria of the capacitive type of a non-compact Riemannian manifold, which complement and, in certain cases, strengthen the known criteria of the classical capacitive type of a Riemannian manifold.

非紧黎曼流形电容型的若干判据
摘要考虑了黎曼流形上的积分容量的一个相当普遍的概念,其中包括几何函数理论中已知的容量概念,如经典容量和保形容量。根据这种一般容量,如同在经典容量的情况下,定义了黎曼流形电容型的概念。本文给出了非紧黎曼流形电容型的一些积分判据,它们补充并在某些情况下加强了黎曼流形经典电容型判据的已知判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
25.00%
发文量
13
期刊介绍: Moscow University Mathematics Bulletin  is the journal of scientific publications reflecting the most important areas of mathematical studies at Lomonosov Moscow State University. The journal covers research in theory of functions, functional analysis, algebra, geometry, topology, ordinary and partial differential equations, probability theory, stochastic processes, mathematical statistics, optimal control, number theory, mathematical logic, theory of algorithms, discrete mathematics and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信