Existence and multiplicity of solutions for a class of indefinite variational problems

IF 0.7 4区 数学 Q2 MATHEMATICS
Claudianor O. Alves, Minbo Yang
{"title":"Existence and multiplicity of solutions for a class of indefinite variational problems","authors":"Claudianor O. Alves, Minbo Yang","doi":"10.4310/cag.2022.v30.n9.a1","DOIUrl":null,"url":null,"abstract":"In this paper we study the existence and multiplicity of solutions for the following class of strongly indefinite problems\\[(P)_k \\qquad\\begin{cases}-\\Delta u + V(x)u=A(x/k)f(u) \\; \\textrm{in} \\; \\mathbb{R}^N, \\\\u ∈ H^1(\\mathbb{R}^N),\\end{cases}\\]where $N \\geq 1$, $k \\in \\mathbb{N}$ is a positive parameter, $f : \\mathbb{R } \\to \\mathbb{R}$ is a continuous function with subcritical growth, and $V, A : \\mathbb{R} \\to \\mathbb{R}$ are continuous functions verifying some technical conditions. Assuming that $V$ is a $\\mathbb{Z}^N$-periodic function, $0 \\notin \\sigma (-\\Delta+V)$ the spectrum of $(-\\Delta+V)$, we show how the ”shape” of the graph of function $A$ affects the number of nontrivial solutions.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2022.v30.n9.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the existence and multiplicity of solutions for the following class of strongly indefinite problems\[(P)_k \qquad\begin{cases}-\Delta u + V(x)u=A(x/k)f(u) \; \textrm{in} \; \mathbb{R}^N, \\u ∈ H^1(\mathbb{R}^N),\end{cases}\]where $N \geq 1$, $k \in \mathbb{N}$ is a positive parameter, $f : \mathbb{R } \to \mathbb{R}$ is a continuous function with subcritical growth, and $V, A : \mathbb{R} \to \mathbb{R}$ are continuous functions verifying some technical conditions. Assuming that $V$ is a $\mathbb{Z}^N$-periodic function, $0 \notin \sigma (-\Delta+V)$ the spectrum of $(-\Delta+V)$, we show how the ”shape” of the graph of function $A$ affects the number of nontrivial solutions.
一类不定变分问题解的存在性和多重性
本文研究了以下一类强不定问题\[(P)_k \qquad\begin{cases}-\Delta u + V(x)u=A(x/k)f(u) \; \textrm{in} \; \mathbb{R}^N, \\u ∈ H^1(\mathbb{R}^N),\end{cases}\]的解的存在性和多重性,其中$N \geq 1$, $k \in \mathbb{N}$是正参数,$f : \mathbb{R } \to \mathbb{R}$是次临界增长的连续函数,$V, A : \mathbb{R} \to \mathbb{R}$是验证某些技术条件的连续函数。假设$V$是一个$\mathbb{Z}^N$ -周期函数,$0 \notin \sigma (-\Delta+V)$是$(-\Delta+V)$的谱,我们展示了函数$A$图的“形状”如何影响非平凡解的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信