{"title":"Random perfect matchings in regular graphs","authors":"Bertille Granet, Felix Joos","doi":"10.1002/rsa.21172","DOIUrl":null,"url":null,"abstract":"We prove that in all regular robust expanders <math altimg=\"urn:x-wiley:rsa:media:rsa21172:rsa21172-math-0001\" display=\"inline\" location=\"graphic/rsa21172-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math>, every edge is asymptotically equally likely contained in a uniformly chosen perfect matching <math altimg=\"urn:x-wiley:rsa:media:rsa21172:rsa21172-math-0002\" display=\"inline\" location=\"graphic/rsa21172-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>M</mi>\n</mrow>\n$$ M $$</annotation>\n</semantics></math>. We also show that given any fixed matching or spanning regular graph <math altimg=\"urn:x-wiley:rsa:media:rsa21172:rsa21172-math-0003\" display=\"inline\" location=\"graphic/rsa21172-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>N</mi>\n</mrow>\n$$ N $$</annotation>\n</semantics></math> in <math altimg=\"urn:x-wiley:rsa:media:rsa21172:rsa21172-math-0004\" display=\"inline\" location=\"graphic/rsa21172-math-0004.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math>, the random variable <math altimg=\"urn:x-wiley:rsa:media:rsa21172:rsa21172-math-0005\" display=\"inline\" location=\"graphic/rsa21172-math-0005.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mo stretchy=\"false\">|</mo>\n<mi>M</mi>\n<mo>∩</mo>\n<mi>E</mi>\n<mo stretchy=\"false\">(</mo>\n<mi>N</mi>\n<mo stretchy=\"false\">)</mo>\n<mo stretchy=\"false\">|</mo>\n</mrow>\n$$ \\mid M\\cap E(N)\\mid $$</annotation>\n</semantics></math> is approximately Poisson distributed. This in particular confirms a conjecture and a question due to Spiro and Surya, and complements results due to Kahn and Kim who proved that in a regular graph every vertex is asymptotically equally likely contained in a uniformly chosen matching. Our proofs rely on the switching method and the fact that simple random walks mix rapidly in robust expanders.","PeriodicalId":20948,"journal":{"name":"Random Structures and Algorithms","volume":"179 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that in all regular robust expanders , every edge is asymptotically equally likely contained in a uniformly chosen perfect matching . We also show that given any fixed matching or spanning regular graph in , the random variable is approximately Poisson distributed. This in particular confirms a conjecture and a question due to Spiro and Surya, and complements results due to Kahn and Kim who proved that in a regular graph every vertex is asymptotically equally likely contained in a uniformly chosen matching. Our proofs rely on the switching method and the fact that simple random walks mix rapidly in robust expanders.
我们证明了在所有正则鲁棒展开G $$ G $$中,每条边都是渐近等可能包含在一致选择的完美匹配M $$ M $$中。我们还证明了给定任意固定匹配或生成正则图N $$ N $$在G $$ G $$中,随机变量|M∩E(N)| $$ \mid M\cap E(N)\mid $$近似泊松分布。这特别证实了Spiro和Surya的一个猜想和问题,并补充了Kahn和Kim的结果,他们证明了在正则图中,每个顶点都是渐近等可能包含在一致选择的匹配中。我们的证明依赖于切换方法和简单随机漫步在鲁棒扩展器中快速混合的事实。