Two-layer networks with the $$\text {ReLU}^k$$ activation function: Barron spaces and derivative approximation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yuanyuan Li, Shuai Lu, Peter Mathé, Sergei V. Pereverzev
{"title":"Two-layer networks with the $$\\text {ReLU}^k$$ activation function: Barron spaces and derivative approximation","authors":"Yuanyuan Li, Shuai Lu, Peter Mathé, Sergei V. Pereverzev","doi":"10.1007/s00211-023-01384-6","DOIUrl":null,"url":null,"abstract":"<p>We investigate the use of two-layer networks with the rectified power unit, which is called the <span>\\(\\text {ReLU}^k\\)</span> activation function, for function and derivative approximation. By extending and calibrating the corresponding Barron space, we show that two-layer networks with the <span>\\(\\text {ReLU}^k\\)</span> activation function are well-designed to simultaneously approximate an unknown function and its derivatives. When the measurement is noisy, we propose a Tikhonov type regularization method, and provide error bounds when the regularization parameter is chosen appropriately. Several numerical examples support the efficiency of the proposed approach.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-023-01384-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the use of two-layer networks with the rectified power unit, which is called the \(\text {ReLU}^k\) activation function, for function and derivative approximation. By extending and calibrating the corresponding Barron space, we show that two-layer networks with the \(\text {ReLU}^k\) activation function are well-designed to simultaneously approximate an unknown function and its derivatives. When the measurement is noisy, we propose a Tikhonov type regularization method, and provide error bounds when the regularization parameter is chosen appropriately. Several numerical examples support the efficiency of the proposed approach.

Abstract Image

具有$$\text {ReLU}^k$$激活函数的两层网络:巴伦空间和导数逼近
我们研究了两层网络与整流功率单元的使用,称为\(\text {ReLU}^k\)激活函数,用于函数和导数逼近。通过扩展和校准相应的巴伦空间,我们证明了具有\(\text {ReLU}^k\)激活函数的两层网络设计得很好,可以同时近似未知函数及其导数。当测量结果有噪声时,我们提出了一种Tikhonov型正则化方法,并在正则化参数选择适当时给出了误差范围。几个数值算例证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信