{"title":"Unraveling MicroRNA Mediated Gene Regulation in Centella asiatica (L.) Urb. by high-Throughput Sequencing Based Small-RNA Profiling","authors":"Gouri Priya Ranjith, Jisha Satheesan, Kallevettankuzhy Krishnannair Sabu","doi":"10.1007/s12042-023-09342-0","DOIUrl":null,"url":null,"abstract":"<p><i>Centella asiatica</i> is a widely spread herb mostly found in the tropics having extensive medicinal values. Here, we report for the first time, transcriptome-wide characterization of miRNA profile from the leaves of <i>C. asiatica</i> using high-throughput Illumina sequencing. We identified 227 conserved and 109 putative novel miRNAs. Computational screening revealed potential mRNA targets for both the conserved and novel miRNAs encoding diverse transcription factors and enzymes involved in plant development, disease resistance, metabolic and signaling pathways. Gene ontology annotation and KEGG analysis revealed the miRNA targets to be involved in a wide range of metabolomic and regulatory pathways. The differential expression of the miRNA encoding genes in diverse tissues was determined by real-time PCR analysis. We also found that gene expression levels of miR156, 159 and 1171 was reduced in salicylic acid treated axenic shoot cultures of <i>C. asiatica</i> compared to its control. Furthermore, RLM-RACE experiments mapped miRNA-mediated cleavage at two of the mRNA targets. The present study represents the large-scale identification of microRNAs from <i>C. asiatica</i> and contributes to the base for the up-coming studies on miRNA-mediated gene regulation of plant secondary metabolite pathways in particular.</p>","PeriodicalId":54356,"journal":{"name":"Tropical Plant Biology","volume":"75 5 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12042-023-09342-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Centella asiatica is a widely spread herb mostly found in the tropics having extensive medicinal values. Here, we report for the first time, transcriptome-wide characterization of miRNA profile from the leaves of C. asiatica using high-throughput Illumina sequencing. We identified 227 conserved and 109 putative novel miRNAs. Computational screening revealed potential mRNA targets for both the conserved and novel miRNAs encoding diverse transcription factors and enzymes involved in plant development, disease resistance, metabolic and signaling pathways. Gene ontology annotation and KEGG analysis revealed the miRNA targets to be involved in a wide range of metabolomic and regulatory pathways. The differential expression of the miRNA encoding genes in diverse tissues was determined by real-time PCR analysis. We also found that gene expression levels of miR156, 159 and 1171 was reduced in salicylic acid treated axenic shoot cultures of C. asiatica compared to its control. Furthermore, RLM-RACE experiments mapped miRNA-mediated cleavage at two of the mRNA targets. The present study represents the large-scale identification of microRNAs from C. asiatica and contributes to the base for the up-coming studies on miRNA-mediated gene regulation of plant secondary metabolite pathways in particular.
期刊介绍:
Tropical Plant Biology covers the most rapidly advancing aspects of tropical plant biology including physiology, evolution, development, cellular and molecular biology, genetics, genomics, genomic ecology, and molecular breeding. It publishes articles of original research, but it also accepts review articles and publishes occasional special issues focused on a single tropical crop species or breakthrough. Information published in this journal guides effort to increase the productivity and quality of tropical plants and preserve the world’s plant diversity. The journal serves as the primary source of newly published information for researchers and professionals in all of the aforementioned areas of tropical science.