{"title":"Performance Analysis of Simplified Seven-Level Inverter using Hybrid HHO-PSO Algorithm for Renewable Energy Applications","authors":"S. Murugesan, M. V. Suganyadevi","doi":"10.1007/s40998-023-00676-9","DOIUrl":null,"url":null,"abstract":"<p>Multi-Level Inverters (MLIs) are the most promising and significant applications in grid-connected renewable energy systems. This research article proposed a novel 7-level MLI with fewer switches that produce the voltage levels required for photovoltaic (PV) applications using hybrid Harris-Hawks Optimization with the Particle Swarm Optimization (HHO-PSO) algorithm. Modulation techniques play a vital role in MLI filtering output voltage harmonics. The Selective Harmonic Elimination (SHE) modulating methodology has been used in this research. This SHE method eliminates the lower-order harmonics by the hybrid HHO-PSO technique,which generates the optimized switching angles. The proposed MLI topology is developed and validated by comparison with other recent 7-level MLI topologies. The PSO, HHO, and hybrid HHO-PSO algorithms are developed in Matlab using m-file coding, which produces the optimized switching angle. Total Harmonic Distortion (THD) analysis on the inverter outer voltage has been carried out, and the results are briefed. The simulation results show that the suggested HHO-PSO approach can yield superior performance with low total harmonic distortion compared to existing approaches. The experimental results for the proposed MLI provide lower THD (2.82%) and minimum switching losses compared to the conventional PSO and HHO algorithms.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-023-00676-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-Level Inverters (MLIs) are the most promising and significant applications in grid-connected renewable energy systems. This research article proposed a novel 7-level MLI with fewer switches that produce the voltage levels required for photovoltaic (PV) applications using hybrid Harris-Hawks Optimization with the Particle Swarm Optimization (HHO-PSO) algorithm. Modulation techniques play a vital role in MLI filtering output voltage harmonics. The Selective Harmonic Elimination (SHE) modulating methodology has been used in this research. This SHE method eliminates the lower-order harmonics by the hybrid HHO-PSO technique,which generates the optimized switching angles. The proposed MLI topology is developed and validated by comparison with other recent 7-level MLI topologies. The PSO, HHO, and hybrid HHO-PSO algorithms are developed in Matlab using m-file coding, which produces the optimized switching angle. Total Harmonic Distortion (THD) analysis on the inverter outer voltage has been carried out, and the results are briefed. The simulation results show that the suggested HHO-PSO approach can yield superior performance with low total harmonic distortion compared to existing approaches. The experimental results for the proposed MLI provide lower THD (2.82%) and minimum switching losses compared to the conventional PSO and HHO algorithms.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.