Defining the spectral position of a Neumann domain

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ram Band, Graham Cox, Sebastian K. Egger
{"title":"Defining the spectral position of a Neumann domain","authors":"Ram Band, Graham Cox, Sebastian K. Egger","doi":"10.2140/apde.2023.16.2147","DOIUrl":null,"url":null,"abstract":"<p>A Laplacian eigenfunction on a two-dimensional Riemannian manifold provides a natural partition into Neumann domains, a.k.a. a Morse–Smale complex. This partition is generated by gradient flow lines of the eigenfunction, which bound the so-called Neumann domains. We prove that the Neumann Laplacian defined on a Neumann domain is self-adjoint and has a purely discrete spectrum. In addition, we prove that the restriction of an eigenfunction to any one of its Neumann domains is an eigenfunction of the Neumann Laplacian. By comparison, similar statements about the Dirichlet Laplacian on a nodal domain of an eigenfunction are basic and well-known. The difficulty here is that the boundary of a Neumann domain may have cusps and cracks, so standard results about Sobolev spaces are not available. Another very useful common fact is that the restricted eigenfunction on a nodal domain is the first eigenfunction of the Dirichlet Laplacian. This is no longer true for a Neumann domain. Our results enable the investigation of the resulting spectral position problem for Neumann domains, which is much more involved than its nodal analogue. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2023.16.2147","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

A Laplacian eigenfunction on a two-dimensional Riemannian manifold provides a natural partition into Neumann domains, a.k.a. a Morse–Smale complex. This partition is generated by gradient flow lines of the eigenfunction, which bound the so-called Neumann domains. We prove that the Neumann Laplacian defined on a Neumann domain is self-adjoint and has a purely discrete spectrum. In addition, we prove that the restriction of an eigenfunction to any one of its Neumann domains is an eigenfunction of the Neumann Laplacian. By comparison, similar statements about the Dirichlet Laplacian on a nodal domain of an eigenfunction are basic and well-known. The difficulty here is that the boundary of a Neumann domain may have cusps and cracks, so standard results about Sobolev spaces are not available. Another very useful common fact is that the restricted eigenfunction on a nodal domain is the first eigenfunction of the Dirichlet Laplacian. This is no longer true for a Neumann domain. Our results enable the investigation of the resulting spectral position problem for Neumann domains, which is much more involved than its nodal analogue.

定义诺伊曼域的光谱位置
二维黎曼流形上的拉普拉斯特征函数提供了诺伊曼域的自然划分,即莫尔斯-斯莫尔复形。这种划分是由特征函数的梯度流线产生的,它约束了所谓的诺伊曼域。证明了在Neumann定义域上定义的Neumann拉普拉斯算子是自伴随的,具有纯离散谱。此外,我们证明了特征函数对其任何一个诺伊曼定义域的约束是诺伊曼拉普拉斯算子的特征函数。通过比较,关于本征函数节点域上的狄利克雷拉普拉斯算子的类似表述是基本的和众所周知的。这里的困难在于诺伊曼域的边界可能有尖点和裂纹,所以关于Sobolev空间的标准结果是不可用的。另一个非常有用的事实是节点域上的受限特征函数是狄利克雷拉普拉斯函数的第一个特征函数。这在诺伊曼定义域中不再成立。我们的结果使得诺伊曼域的频谱位置问题的研究成为可能,这比它的节点模拟更复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信