IDA and Hankel operators on Fock spaces

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhangjian Hu, Jani A. Virtanen
{"title":"IDA and Hankel operators on Fock spaces","authors":"Zhangjian Hu, Jani A. Virtanen","doi":"10.2140/apde.2023.16.2041","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new space IDA of locally integrable functions whose integral distance to holomorphic functions is finite, and use it to completely characterize boundedness and compactness of Hankel operators on weighted Fock spaces. As an application, for bounded symbols, we show that the Hankel operator <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>H</mi></mrow><mrow><mi>f</mi></mrow></msub></math> is compact if and only if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>H</mi></mrow><mrow><mover accent=\"true\"><mrow><mi>f</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow></msub></math> is compact, which complements the classical compactness result of Berger and Coburn. Motivated by recent work of Bauer, Coburn, and Hagger, we also apply our results to the Berezin–Toeplitz quantization. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2023.16.2041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

We introduce a new space IDA of locally integrable functions whose integral distance to holomorphic functions is finite, and use it to completely characterize boundedness and compactness of Hankel operators on weighted Fock spaces. As an application, for bounded symbols, we show that the Hankel operator Hf is compact if and only if Hf¯ is compact, which complements the classical compactness result of Berger and Coburn. Motivated by recent work of Bauer, Coburn, and Hagger, we also apply our results to the Berezin–Toeplitz quantization.

fok空间上的IDA算子和Hankel算子
引入到全纯函数的积分距离有限的局部可积函数的一个新的空间IDA,并利用它完整地刻画了加权Fock空间上Hankel算子的有界性和紧性。作为一个应用,对于有界符号,我们证明了Hankel算子Hf是紧的当且仅当Hf¯是紧的,这补充了Berger和Coburn的经典紧性结果。受Bauer, Coburn和Hagger最近工作的激励,我们也将我们的结果应用于Berezin-Toeplitz量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信