{"title":"Answering (Unions of) Conjunctive Queries using Random Access and Random-Order Enumeration","authors":"Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Alessio Conte, Benny Kimelfeld, Nicole Schweikardt","doi":"https://dl.acm.org/doi/10.1145/3531055","DOIUrl":null,"url":null,"abstract":"<p>As data analytics becomes more crucial to digital systems, so grows the importance of characterizing the database queries that admit a more efficient evaluation. We consider the tractability yardstick of answer enumeration with a polylogarithmic delay after a linear-time preprocessing phase. Such an evaluation is obtained by constructing, in the preprocessing phase, a data structure that supports polylogarithmic-delay enumeration. In this article, we seek a structure that supports the more demanding task of a “random permutation”: polylogarithmic-delay enumeration in truly random order. Enumeration of this kind is required if downstream applications assume that the intermediate results are representative of the whole result set in a statistically meaningful manner. An even more demanding task is that of “random access”: polylogarithmic-time retrieval of an answer whose position is given.</p><p>We establish that the free-connex acyclic CQs are tractable in all three senses: enumeration, random-order enumeration, and random access; and in the absence of self-joins, it follows from past results that every other CQ is intractable by each of the three (under some fine-grained complexity assumptions). However, the three yardsticks are separated in the case of a <b>union of CQs (UCQ</b>): while a union of free-connex acyclic CQs has a tractable enumeration, it may (provably) admit no random access. We identify a fragment of such UCQs where we can guarantee random access with polylogarithmic access time (and linear-time preprocessing) and a more general fragment where we can guarantee tractable random permutation. For general unions of free-connex acyclic CQs, we devise two algorithms with relaxed guarantees: one has logarithmic delay in expectation, and the other provides a permutation that is almost uniformly distributed. Finally, we present an implementation and an empirical study that show a considerable practical superiority of our random-order enumeration approach over state-of-the-art alternatives.</p>","PeriodicalId":50915,"journal":{"name":"ACM Transactions on Database Systems","volume":"84 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3531055","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
As data analytics becomes more crucial to digital systems, so grows the importance of characterizing the database queries that admit a more efficient evaluation. We consider the tractability yardstick of answer enumeration with a polylogarithmic delay after a linear-time preprocessing phase. Such an evaluation is obtained by constructing, in the preprocessing phase, a data structure that supports polylogarithmic-delay enumeration. In this article, we seek a structure that supports the more demanding task of a “random permutation”: polylogarithmic-delay enumeration in truly random order. Enumeration of this kind is required if downstream applications assume that the intermediate results are representative of the whole result set in a statistically meaningful manner. An even more demanding task is that of “random access”: polylogarithmic-time retrieval of an answer whose position is given.
We establish that the free-connex acyclic CQs are tractable in all three senses: enumeration, random-order enumeration, and random access; and in the absence of self-joins, it follows from past results that every other CQ is intractable by each of the three (under some fine-grained complexity assumptions). However, the three yardsticks are separated in the case of a union of CQs (UCQ): while a union of free-connex acyclic CQs has a tractable enumeration, it may (provably) admit no random access. We identify a fragment of such UCQs where we can guarantee random access with polylogarithmic access time (and linear-time preprocessing) and a more general fragment where we can guarantee tractable random permutation. For general unions of free-connex acyclic CQs, we devise two algorithms with relaxed guarantees: one has logarithmic delay in expectation, and the other provides a permutation that is almost uniformly distributed. Finally, we present an implementation and an empirical study that show a considerable practical superiority of our random-order enumeration approach over state-of-the-art alternatives.
期刊介绍:
Heavily used in both academic and corporate R&D settings, ACM Transactions on Database Systems (TODS) is a key publication for computer scientists working in data abstraction, data modeling, and designing data management systems. Topics include storage and retrieval, transaction management, distributed and federated databases, semantics of data, intelligent databases, and operations and algorithms relating to these areas. In this rapidly changing field, TODS provides insights into the thoughts of the best minds in database R&D.