Addressing Societal Challenges Through Analytics: A Framework for Building a Foreclosure Prediction Model Using Publicly-Available Demographic Data, GIS, and Machine Learning
IF 2.5 4区 计算机科学Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"Addressing Societal Challenges Through Analytics: A Framework for Building a Foreclosure Prediction Model Using Publicly-Available Demographic Data, GIS, and Machine Learning","authors":"Dinko Bačić","doi":"10.1142/s021962202350061x","DOIUrl":null,"url":null,"abstract":"<p>Information systems (IS) and data analytics-focused academic disciplines remained surprisingly silent in attempting to contribute to a public understanding of critical societal challenges such as foreclosures. This paper tackles the gap by presenting a framework for building foreclosure prediction models by integrating publicly-available census-tract demographic data and readily-available technology (geographic IS (GIS) and machine learning (ML)). The framework is tested and validated using over 19,000 foreclosures from Cuyahoga County (OH) using J48 decision tree, artificial neural network, and Naive Bayes algorithms. The framework’s empirical test identifies nine critical demographic attributes to successfully predict foreclosures, confirming the findings of prior studies while offering several new, highly predictive variables that were missed by prior research. This research is a call to broader IS, CS, and data science communities to assist society in understanding critical societal issues that may need deploying and integrating more advanced technologies.</p>","PeriodicalId":50315,"journal":{"name":"International Journal of Information Technology & Decision Making","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology & Decision Making","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s021962202350061x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Information systems (IS) and data analytics-focused academic disciplines remained surprisingly silent in attempting to contribute to a public understanding of critical societal challenges such as foreclosures. This paper tackles the gap by presenting a framework for building foreclosure prediction models by integrating publicly-available census-tract demographic data and readily-available technology (geographic IS (GIS) and machine learning (ML)). The framework is tested and validated using over 19,000 foreclosures from Cuyahoga County (OH) using J48 decision tree, artificial neural network, and Naive Bayes algorithms. The framework’s empirical test identifies nine critical demographic attributes to successfully predict foreclosures, confirming the findings of prior studies while offering several new, highly predictive variables that were missed by prior research. This research is a call to broader IS, CS, and data science communities to assist society in understanding critical societal issues that may need deploying and integrating more advanced technologies.
期刊介绍:
International Journal of Information Technology and Decision Making (IJITDM) provides a global forum for exchanging research findings and case studies which bridge the latest information technology and various decision-making techniques. It promotes how information technology improves decision techniques as well as how the development of decision-making tools affects the information technology era. The journal is peer-reviewed and publishes both high-quality academic (theoretical or empirical) and practical papers in the broad ranges of information technology related topics including, but not limited to the following:
• Artificial Intelligence and Decision Making
• Bio-informatics and Medical Decision Making
• Cluster Computing and Performance
• Data Mining and Web Mining
• Data Warehouse and Applications
• Database Performance Evaluation
• Decision Making and Distributed Systems
• Decision Making and Electronic Transaction and Payment
• Decision Making of Internet Companies
• Decision Making on Information Security
• Decision Models for Electronic Commerce
• Decision Models for Internet Based on Companies
• Decision Support Systems
• Decision Technologies in Information System Design
• Digital Library Designs
• Economic Decisions and Information Systems
• Enterprise Computing and Evaluation
• Fuzzy Logic and Internet
• Group Decision Making and Software
• Habitual Domain and Information Technology
• Human Computer Interaction
• Information Ethics and Legal Evaluations
• Information Overload
• Information Policy Making
• Information Retrieval Systems
• Information Technology and Organizational Behavior
• Intelligent Agents Technologies
• Intelligent and Fuzzy Information Processing
• Internet Service and Training
• Knowledge Representation Models
• Making Decision through Internet
• Multimedia and Decision Making
[...]