Nadeeka Parana Manage, Natalie Lockart, Garry Willgoose, George Kuczera, Anthony S. Kiem, AFM Kamal Chowdhury, Lanying Zhang, Callum Twomey
{"title":"Statistical testing of dynamically downscaled rainfall data for the Upper Hunter region, New South Wales, Australia","authors":"Nadeeka Parana Manage, Natalie Lockart, Garry Willgoose, George Kuczera, Anthony S. Kiem, AFM Kamal Chowdhury, Lanying Zhang, Callum Twomey","doi":"10.1071/es16016","DOIUrl":null,"url":null,"abstract":"This study tests the statistical properties of downscaled climate data, concentrating on the rainfall which is required for hydrology predictions used in water supply reservoir simulations. The datasets used in this study have been produced by the New South Wales (NSW) / Australian Capital Territory (ACT) Regional Climate Modelling (NARCliM) project which provides a dynamically downscaled climate dataset for southeast Australia at 10 km resolution. In this paper, we present an evaluation of the downscaled NARCliM National Centers for Environmental Prediction (NCEP) / National Center for Atmospheric Research (NCAR) reanalysis simulations. The validation has been performed in the Goulburn River catchment in the Upper Hunter region of New South Wales, Australia. The analysis compared time series of the downscaled NARCliM rain-fall data with ground based measurements for selected Bureau of Meteorology rainfall stations and 5 km gridded data from the Australian Water Availability Project (AWAP). The initial testing of the rainfall was focused on autocorrelations as persistence is an important factor in hydrological and water availability analysis. Additionally, a cross-correlation analysis was performed at daily, fort-nightly, monthly and annually averaged time resolutions. The spatial variability of these statistics were calculated and plotted at the catchment scale. The auto-correlation analysis shows that the seasonal cycle in the NARCliM data is stronger than the seasonal cycle present in the ground based measurements and AWAP data. The cross-correlation analysis also shows a poor agreement between NARCliM data, and AWAP and ground based measurements. The spatial variability plots show a possible link between these discrepancies and orography at the catchment scale.","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":"30 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Southern Hemisphere Earth Systems Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1071/es16016","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
This study tests the statistical properties of downscaled climate data, concentrating on the rainfall which is required for hydrology predictions used in water supply reservoir simulations. The datasets used in this study have been produced by the New South Wales (NSW) / Australian Capital Territory (ACT) Regional Climate Modelling (NARCliM) project which provides a dynamically downscaled climate dataset for southeast Australia at 10 km resolution. In this paper, we present an evaluation of the downscaled NARCliM National Centers for Environmental Prediction (NCEP) / National Center for Atmospheric Research (NCAR) reanalysis simulations. The validation has been performed in the Goulburn River catchment in the Upper Hunter region of New South Wales, Australia. The analysis compared time series of the downscaled NARCliM rain-fall data with ground based measurements for selected Bureau of Meteorology rainfall stations and 5 km gridded data from the Australian Water Availability Project (AWAP). The initial testing of the rainfall was focused on autocorrelations as persistence is an important factor in hydrological and water availability analysis. Additionally, a cross-correlation analysis was performed at daily, fort-nightly, monthly and annually averaged time resolutions. The spatial variability of these statistics were calculated and plotted at the catchment scale. The auto-correlation analysis shows that the seasonal cycle in the NARCliM data is stronger than the seasonal cycle present in the ground based measurements and AWAP data. The cross-correlation analysis also shows a poor agreement between NARCliM data, and AWAP and ground based measurements. The spatial variability plots show a possible link between these discrepancies and orography at the catchment scale.
期刊介绍:
The Journal of Southern Hemisphere Earth Systems Science (JSHESS) publishes broad areas of research with a distinct emphasis on the Southern Hemisphere. The scope of the Journal encompasses the study of the mean state, variability and change of the atmosphere, oceans, and land surface, including the cryosphere, from hemispheric to regional scales.
general circulation of the atmosphere and oceans,
climate change and variability ,
climate impacts,
climate modelling ,
past change in the climate system including palaeoclimate variability,
atmospheric dynamics,
synoptic meteorology,
mesoscale meteorology and severe weather,
tropical meteorology,
observation systems,
remote sensing of atmospheric, oceanic and land surface processes,
weather, climate and ocean prediction,
atmospheric and oceanic composition and chemistry,
physical oceanography,
air‐sea interactions,
coastal zone processes,
hydrology,
cryosphere‐atmosphere interactions,
land surface‐atmosphere interactions,
space weather, including impacts and mitigation on technology,
ionospheric, magnetospheric, auroral and space physics,
data assimilation applied to the above subject areas .
Authors are encouraged to contact the Editor for specific advice on whether the subject matter of a proposed submission is appropriate for the Journal of Southern Hemisphere Earth Systems Science.