Some Problems of Convergence of General Fourier Series

Pub Date : 2022-12-23 DOI:10.3103/s1068362322060085
V. Tsagareishvili, G. Tutberidze
{"title":"Some Problems of Convergence of General Fourier Series","authors":"V. Tsagareishvili, G. Tutberidze","doi":"10.3103/s1068362322060085","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Banach [1] proved that good differential properties of function do not guarantee the a.e. convergence of the Fourier series of this function with respect to general orthonormal systems (ONS). On the other hand it is very well known that a sufficient condition for the a.e. convergence of an orthonormal series is given by the Menshov–Rademacher Theorem. The paper deals with sequence of positive numbers <span>\\((d_{n})\\)</span> such that multiplying the Fourier coefficients <span>\\((C_{n}(f))\\)</span> of functions with bounded variation by these numbers one obtains a.e. convergent series of the form <span>\\(\\sum_{n=1}^{\\infty}d_{n}C_{n}(f)\\varphi_{n}(x).\\)</span> It is established that the resulting conditions are best possible.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362322060085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Banach [1] proved that good differential properties of function do not guarantee the a.e. convergence of the Fourier series of this function with respect to general orthonormal systems (ONS). On the other hand it is very well known that a sufficient condition for the a.e. convergence of an orthonormal series is given by the Menshov–Rademacher Theorem. The paper deals with sequence of positive numbers \((d_{n})\) such that multiplying the Fourier coefficients \((C_{n}(f))\) of functions with bounded variation by these numbers one obtains a.e. convergent series of the form \(\sum_{n=1}^{\infty}d_{n}C_{n}(f)\varphi_{n}(x).\) It is established that the resulting conditions are best possible.

分享
查看原文
一般傅里叶级数收敛性的几个问题
摘要banach[1]证明了函数的良好的微分性质并不能保证该函数的傅里叶级数对一般正交系统(ONS)的a.e.收敛。另一方面,众所周知,Menshov-Rademacher定理给出了一个标准正交级数a.e.收敛的充分条件。本文讨论了正数序列\((d_{n})\),使有界变分函数的傅里叶系数\((C_{n}(f))\)与这些数相乘,得到了形式为\(\sum_{n=1}^{\infty}d_{n}C_{n}(f)\varphi_{n}(x).\)的收敛级数,并证明了所得到的条件是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信