Some Estimates for Riesz Transforms Associated with Schrödinger Operators

Pub Date : 2022-12-23 DOI:10.3103/s1068362322060097
Y. H. Wang
{"title":"Some Estimates for Riesz Transforms Associated with Schrödinger Operators","authors":"Y. H. Wang","doi":"10.3103/s1068362322060097","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Let <span>\\(\\mathcal{L}=-\\Delta+V\\)</span> be the Schrödinger operator on <span>\\(\\mathbb{R}^{n},\\)</span> where <span>\\(n\\geq 3,\\)</span> and nonnegative potential <span>\\(V\\)</span> belongs to the reverse Hölder class <span>\\(RH_{q}\\)</span> with <span>\\(n/2\\leq q&lt;n.\\)</span> Let <span>\\(H^{p}_{\\mathcal{L}}(\\mathbb{R}^{n})\\)</span> denote the Hardy space related to <span>\\(\\mathcal{L}\\)</span> and <span>\\(BMO_{\\mathcal{L}}(\\mathbb{R}^{n})\\)</span> denote the dual space of <span>\\(H^{1}_{\\mathcal{L}}(\\mathbb{R}^{n}).\\)</span> In this paper, we show that <span>\\(T_{\\alpha,\\beta}=V^{\\alpha}\\nabla\\mathcal{L}^{-\\beta}\\)</span> is bounded from <span>\\(H^{p_{1}}_{\\mathcal{L}}(\\mathbb{R}^{n})\\)</span> into <span>\\(L^{p_{2}}(\\mathbb{R}^{n})\\)</span> for <span>\\(\\dfrac{n}{n+\\delta^{\\prime}}&lt;p_{1}\\leq 1\\)</span> and <span>\\(\\dfrac{1}{p_{2}}=\\dfrac{1}{p_{1}}-\\dfrac{2(\\beta-\\alpha)}{n},\\)</span> where <span>\\(\\delta^{\\prime}=\\min\\{1,2-n/q_{0}\\}\\)</span> and <span>\\(q_{0}\\)</span> is the reverse Hölder index of <span>\\(V.\\)</span> Moreover, we prove <span>\\(T^{*}_{\\alpha,\\beta}\\)</span> is bounded on <span>\\(BMO_{\\mathcal{L}}(\\mathbb{R}^{n})\\)</span> when <span>\\(\\beta-\\alpha=1/2.\\)</span>\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362322060097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathcal{L}=-\Delta+V\) be the Schrödinger operator on \(\mathbb{R}^{n},\) where \(n\geq 3,\) and nonnegative potential \(V\) belongs to the reverse Hölder class \(RH_{q}\) with \(n/2\leq q<n.\) Let \(H^{p}_{\mathcal{L}}(\mathbb{R}^{n})\) denote the Hardy space related to \(\mathcal{L}\) and \(BMO_{\mathcal{L}}(\mathbb{R}^{n})\) denote the dual space of \(H^{1}_{\mathcal{L}}(\mathbb{R}^{n}).\) In this paper, we show that \(T_{\alpha,\beta}=V^{\alpha}\nabla\mathcal{L}^{-\beta}\) is bounded from \(H^{p_{1}}_{\mathcal{L}}(\mathbb{R}^{n})\) into \(L^{p_{2}}(\mathbb{R}^{n})\) for \(\dfrac{n}{n+\delta^{\prime}}<p_{1}\leq 1\) and \(\dfrac{1}{p_{2}}=\dfrac{1}{p_{1}}-\dfrac{2(\beta-\alpha)}{n},\) where \(\delta^{\prime}=\min\{1,2-n/q_{0}\}\) and \(q_{0}\) is the reverse Hölder index of \(V.\) Moreover, we prove \(T^{*}_{\alpha,\beta}\) is bounded on \(BMO_{\mathcal{L}}(\mathbb{R}^{n})\) when \(\beta-\alpha=1/2.\)

分享
查看原文
与Schrödinger算子相关的Riesz变换的一些估计
AbstractLet \(\mathcal{L}=-\Delta+V\) 是Schrödinger的操作员 \(\mathbb{R}^{n},\) 在哪里 \(n\geq 3,\) 非负电位 \(V\) 属于反向Hölder类 \(RH_{q}\) 有 \(n/2\leq q<n.\) 让 \(H^{p}_{\mathcal{L}}(\mathbb{R}^{n})\) 表示与之相关的Hardy空间 \(\mathcal{L}\) 和 \(BMO_{\mathcal{L}}(\mathbb{R}^{n})\) 表示的对偶空间 \(H^{1}_{\mathcal{L}}(\mathbb{R}^{n}).\) 在本文中,我们证明了这一点 \(T_{\alpha,\beta}=V^{\alpha}\nabla\mathcal{L}^{-\beta}\) 是由 \(H^{p_{1}}_{\mathcal{L}}(\mathbb{R}^{n})\) 进入 \(L^{p_{2}}(\mathbb{R}^{n})\) 为了 \(\dfrac{n}{n+\delta^{\prime}}<p_{1}\leq 1\) 和 \(\dfrac{1}{p_{2}}=\dfrac{1}{p_{1}}-\dfrac{2(\beta-\alpha)}{n},\) 在哪里 \(\delta^{\prime}=\min\{1,2-n/q_{0}\}\) 和 \(q_{0}\) 反向的Hölder指数是 \(V.\) 此外,我们证明 \(T^{*}_{\alpha,\beta}\) 是有界的 \(BMO_{\mathcal{L}}(\mathbb{R}^{n})\) 什么时候 \(\beta-\alpha=1/2.\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信