On the Turán Number of $$K_m \vee C_{2k-1}$$

IF 0.6 4区 数学 Q3 MATHEMATICS
Jingru Yan
{"title":"On the Turán Number of $$K_m \\vee C_{2k-1}$$","authors":"Jingru Yan","doi":"10.1007/s00373-023-02728-7","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <i>H</i> and a positive integer <i>n</i>, the Turán number of <i>H</i> of the order <i>n</i>, denoted by <i>ex</i>(<i>n</i>, <i>H</i>), is the maximum size of a simple graph of order <i>n</i> that does not contain <i>H</i> as a subgraph. Given graphs <i>G</i> and <i>H</i>, <span>\\(G \\vee H\\)</span> denotes the join of <i>G</i> and <i>H</i>. In this paper, we prove <span>\\(ex(n, K_m \\vee C_{2k-1}) = \\left\\lfloor \\frac{(m+1)n^2}{2(m+2)}\\right\\rfloor \\)</span> for <span>\\(n\\ge 2(m+2)k-3(m+2)-1\\)</span>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"15 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02728-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a graph H and a positive integer n, the Turán number of H of the order n, denoted by ex(nH), is the maximum size of a simple graph of order n that does not contain H as a subgraph. Given graphs G and H, \(G \vee H\) denotes the join of G and H. In this paper, we prove \(ex(n, K_m \vee C_{2k-1}) = \left\lfloor \frac{(m+1)n^2}{2(m+2)}\right\rfloor \) for \(n\ge 2(m+2)k-3(m+2)-1\).

在Turán的数量 $$K_m \vee C_{2k-1}$$
给定一个图H和一个正整数n,用ex(n, H)表示的n阶H的个数Turán是不包含H作为子图的n阶简单图的最大大小。给定图G和图H, \(G \vee H\)表示G和H的连接。本文证明了\(n\ge 2(m+2)k-3(m+2)-1\)的\(ex(n, K_m \vee C_{2k-1}) = \left\lfloor \frac{(m+1)n^2}{2(m+2)}\right\rfloor \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信