Complexity of Total Dominator Coloring in Graphs

IF 0.6 4区 数学 Q3 MATHEMATICS
Michael A. Henning, Kusum, Arti Pandey, Kaustav Paul
{"title":"Complexity of Total Dominator Coloring in Graphs","authors":"Michael A. Henning, Kusum, Arti Pandey, Kaustav Paul","doi":"10.1007/s00373-023-02726-9","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(G=(V,E)\\)</span> be a graph with no isolated vertices. A vertex <i>v</i> totally dominates a vertex <i>w</i> (<span>\\(w \\ne v\\)</span>), if <i>v</i> is adjacent to <i>w</i>. A set <span>\\(D \\subseteq V\\)</span> called a <i>total dominating set</i> of <i>G</i> if every vertex <span>\\(v\\in V\\)</span> is totally dominated by some vertex in <i>D</i>. The minimum cardinality of a total dominating set is the <i>total domination number</i> of <i>G</i> and is denoted by <span>\\(\\gamma _t(G)\\)</span>. A <i>total dominator coloring</i> of graph <i>G</i> is a proper coloring of vertices of <i>G</i>, so that each vertex totally dominates some color class. The total dominator chromatic number <span>\\(\\chi _{{\\textrm{td}}}(G)\\)</span> of <i>G</i> is the least number of colors required for a total dominator coloring of <i>G</i>. The <span>Total Dominator Coloring</span> problem is to find a total dominator coloring of <i>G</i> using the minimum number of colors. It is known that the decision version of this problem is NP-complete for general graphs. We show that it remains NP-complete even when restricted to bipartite, planar and split graphs. We further study the <span>Total Dominator Coloring</span> problem for various graph classes, including trees, cographs and chain graphs. First, we characterize the trees having <span>\\(\\chi _{{\\textrm{td}}}(T)=\\gamma _t(T)+1\\)</span>, which completes the characterization of trees achieving all possible values of <span>\\(\\chi _{{\\textrm{td}}}(T)\\)</span>. Also, we show that for a cograph <i>G</i>, <span>\\(\\chi _{{\\textrm{td}}}(G)\\)</span> can be computed in linear-time. Moreover, we show that <span>\\(2 \\le \\chi _{{\\textrm{td}}}(G) \\le 4\\)</span> for a chain graph <i>G</i> and then we characterize the class of chain graphs for every possible value of <span>\\(\\chi _{{\\textrm{td}}}(G)\\)</span> in linear-time.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"72 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02726-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(G=(V,E)\) be a graph with no isolated vertices. A vertex v totally dominates a vertex w (\(w \ne v\)), if v is adjacent to w. A set \(D \subseteq V\) called a total dominating set of G if every vertex \(v\in V\) is totally dominated by some vertex in D. The minimum cardinality of a total dominating set is the total domination number of G and is denoted by \(\gamma _t(G)\). A total dominator coloring of graph G is a proper coloring of vertices of G, so that each vertex totally dominates some color class. The total dominator chromatic number \(\chi _{{\textrm{td}}}(G)\) of G is the least number of colors required for a total dominator coloring of G. The Total Dominator Coloring problem is to find a total dominator coloring of G using the minimum number of colors. It is known that the decision version of this problem is NP-complete for general graphs. We show that it remains NP-complete even when restricted to bipartite, planar and split graphs. We further study the Total Dominator Coloring problem for various graph classes, including trees, cographs and chain graphs. First, we characterize the trees having \(\chi _{{\textrm{td}}}(T)=\gamma _t(T)+1\), which completes the characterization of trees achieving all possible values of \(\chi _{{\textrm{td}}}(T)\). Also, we show that for a cograph G, \(\chi _{{\textrm{td}}}(G)\) can be computed in linear-time. Moreover, we show that \(2 \le \chi _{{\textrm{td}}}(G) \le 4\) for a chain graph G and then we characterize the class of chain graphs for every possible value of \(\chi _{{\textrm{td}}}(G)\) in linear-time.

Abstract Image

图中总支配子着色的复杂性
设\(G=(V,E)\)是一个没有孤立顶点的图。如果v与w相邻,顶点v完全支配顶点w (\(w \ne v\))。如果每个顶点\(v\in V\)完全被d中的某个顶点支配,则集合\(D \subseteq V\)称为G的总支配集。总支配集的最小基数是G的总支配数,用\(\gamma _t(G)\)表示。图G的完全支配着色是G的顶点的适当着色,使得每个顶点完全支配某个颜色类。G的总支配子色数\(\chi _{{\textrm{td}}}(G)\)是G的总支配子着色所需的最少色数。总支配子着色问题是用最少色数找到G的总支配子着色。已知对于一般图,该问题的决策版本是np完全的。我们证明了即使在二部图、平面图和分割图中,它仍然是np完全的。我们进一步研究了各种图类的总支配子着色问题,包括树图、图和链图。首先,我们对具有\(\chi _{{\textrm{td}}}(T)=\gamma _t(T)+1\)的树进行表征,这样就完成了对达到\(\chi _{{\textrm{td}}}(T)\)所有可能值的树的表征。此外,我们还证明了对于图G, \(\chi _{{\textrm{td}}}(G)\)可以在线性时间内计算。此外,我们证明了链图G的\(2 \le \chi _{{\textrm{td}}}(G) \le 4\),然后我们刻画了链图在线性时间内\(\chi _{{\textrm{td}}}(G)\)的每一个可能值的类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信