Bidhayak Goswami, K. R. Jayaprakash, Anindya Chatterjee
{"title":"Short time angular impulse response of Rayleigh beams","authors":"Bidhayak Goswami, K. R. Jayaprakash, Anindya Chatterjee","doi":"10.1007/s10665-023-10302-6","DOIUrl":null,"url":null,"abstract":"<p>In the dynamics of linear structures, the impulse response function is of fundamental interest. In some cases one examines the short term response wherein the disturbance is still local and the boundaries have not yet come into play, and for such short-time analysis the geometrical extent of the structure may be taken as unbounded. Here we examine the response of slender beams to angular impulses. The Euler–Bernoulli model, which does not include rotary inertia of cross sections, predicts an unphysical and unbounded initial rotation at the point of application. A finite length Euler–Bernoulli beam, when modeled using finite elements, predicts a mesh-dependent response that shows fast large-amplitude oscillations setting in very quickly. The simplest introduction of rotary inertia yields the Rayleigh beam model, which has more reasonable behavior including a finite wave speed at all frequencies. If a Rayleigh beam is given an impulsive moment at a location away from its boundaries, then the predicted behavior has an instantaneous finite jump in local slope or rotation, followed by smooth evolution of the slope for a finite time interval until reflections arrive from the boundary, causing subsequent slope discontinuities in time. We present a detailed study of the angular impulse response of a simply supported Rayleigh beam, starting with dimensional analysis, followed by modal expansion including all natural frequencies, culminating with an asymptotic formula for the short-time response. The asymptotic formula is obtained by breaking the series solution into two parts to be treated independently term by term, and leads to a polynomial in time. The polynomial matches the response from refined finite element (FE) simulations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10302-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the dynamics of linear structures, the impulse response function is of fundamental interest. In some cases one examines the short term response wherein the disturbance is still local and the boundaries have not yet come into play, and for such short-time analysis the geometrical extent of the structure may be taken as unbounded. Here we examine the response of slender beams to angular impulses. The Euler–Bernoulli model, which does not include rotary inertia of cross sections, predicts an unphysical and unbounded initial rotation at the point of application. A finite length Euler–Bernoulli beam, when modeled using finite elements, predicts a mesh-dependent response that shows fast large-amplitude oscillations setting in very quickly. The simplest introduction of rotary inertia yields the Rayleigh beam model, which has more reasonable behavior including a finite wave speed at all frequencies. If a Rayleigh beam is given an impulsive moment at a location away from its boundaries, then the predicted behavior has an instantaneous finite jump in local slope or rotation, followed by smooth evolution of the slope for a finite time interval until reflections arrive from the boundary, causing subsequent slope discontinuities in time. We present a detailed study of the angular impulse response of a simply supported Rayleigh beam, starting with dimensional analysis, followed by modal expansion including all natural frequencies, culminating with an asymptotic formula for the short-time response. The asymptotic formula is obtained by breaking the series solution into two parts to be treated independently term by term, and leads to a polynomial in time. The polynomial matches the response from refined finite element (FE) simulations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.