{"title":"IFF: A Superresolution Algorithm for Multiple Measurements","authors":"Zetao Fei, Hai Zhang","doi":"10.1137/23m1568569","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 16, Issue 4, Page 2175-2201, December 2023. <br/> Abstract. We consider the problem of reconstructing one-dimensional point sources from their Fourier measurements in a bounded interval [math]. This problem is known to be challenging in the regime where the spacing of the sources is below the Rayleigh length [math]. In this paper, we propose a superresolution algorithm, called iterative focusing-localization and iltering, to resolve closely spaced point sources from their multiple measurements that are obtained by using multiple unknown illumination patterns. The new proposed algorithm has a distinct feature in that it reconstructs the point sources one by one in an iterative manner and hence requires no prior information about the source numbers. The new feature also allows for a subsampling strategy that can reconstruct sources using small-sized Hankel matrices and thus circumvent the computation of singular-value decomposition for large matrices as in the usual subspace methods. In addition, the algorithm can be paralleled. A theoretical analysis of the methods behind the algorithm is also provided. The derived results imply a phase transition phenomenon in the reconstruction of source locations which is confirmed in the numerical experiment. Numerical results show that the algorithm can achieve a stable reconstruction for point sources with a minimum separation distance that is close to the theoretical limit. The efficiency and robustness of the algorithm have also been tested. This algorithm can be generalized to higher dimensions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1568569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
SIAM Journal on Imaging Sciences, Volume 16, Issue 4, Page 2175-2201, December 2023. Abstract. We consider the problem of reconstructing one-dimensional point sources from their Fourier measurements in a bounded interval [math]. This problem is known to be challenging in the regime where the spacing of the sources is below the Rayleigh length [math]. In this paper, we propose a superresolution algorithm, called iterative focusing-localization and iltering, to resolve closely spaced point sources from their multiple measurements that are obtained by using multiple unknown illumination patterns. The new proposed algorithm has a distinct feature in that it reconstructs the point sources one by one in an iterative manner and hence requires no prior information about the source numbers. The new feature also allows for a subsampling strategy that can reconstruct sources using small-sized Hankel matrices and thus circumvent the computation of singular-value decomposition for large matrices as in the usual subspace methods. In addition, the algorithm can be paralleled. A theoretical analysis of the methods behind the algorithm is also provided. The derived results imply a phase transition phenomenon in the reconstruction of source locations which is confirmed in the numerical experiment. Numerical results show that the algorithm can achieve a stable reconstruction for point sources with a minimum separation distance that is close to the theoretical limit. The efficiency and robustness of the algorithm have also been tested. This algorithm can be generalized to higher dimensions.