Mechanism and key parameters of stress load-off by innovative asymmetric hole-constructing on the two sides of deep roadway

IF 6.9 1区 工程技术 Q2 ENERGY & FUELS
Dongdong Chen, Zaisheng Jiang, Shengrong Xie
{"title":"Mechanism and key parameters of stress load-off by innovative asymmetric hole-constructing on the two sides of deep roadway","authors":"Dongdong Chen, Zaisheng Jiang, Shengrong Xie","doi":"10.1007/s40789-023-00635-z","DOIUrl":null,"url":null,"abstract":"<p>Traditional dense large-diameter borehole stress load-off techniques reduce the stress levels in the shallow surrounding rock, weaken the bearing capacity of the shallow surrounding rock, and greatly deteriorate the shallow surrounding rock strength and supporting structure, which is not conducive to maintaining the long-term stability of the roadway. Therefore, to address the control problem for the pronounced extrusion deformation in the two sides of a roadway and the overall outward movement of the shallow surrounding rock supported by the sides bolts and anchor cables, as well as to comprehensively consider the on-site construction conditions of the two sides of a test roadway, stress load-off technology for asymmetric hole construction on the two sides of a roadway is proposed. The asymmetric stress load-off technique is a new method; while the shallow surrounding rock of the roadway sides is strongly anchored via a full anchor cable support form, a group of large stress load-off holes near the deep stress peak line of the roadway sides is excavated to relieve pressure and protect the roadway. This technology can transfer the peak stress area of the roadway side deeper into f the surrounding rock without deteriorating the shallow surrounding rock strength and damaging the supporting structure. A numerical simulation analysis of asymmetric stress load-off on the two sides of the roadway was performed, the stress load-off effect evaluation index was established, and the optimal field construction parameters were obtained. The stress load-off parameters obtained from the study are applicable to field engineering practice. Mine pressure data reveal that the test roadway remains intact and stable during the use period when the asymmetric stress load-off technique is adopted.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-023-00635-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional dense large-diameter borehole stress load-off techniques reduce the stress levels in the shallow surrounding rock, weaken the bearing capacity of the shallow surrounding rock, and greatly deteriorate the shallow surrounding rock strength and supporting structure, which is not conducive to maintaining the long-term stability of the roadway. Therefore, to address the control problem for the pronounced extrusion deformation in the two sides of a roadway and the overall outward movement of the shallow surrounding rock supported by the sides bolts and anchor cables, as well as to comprehensively consider the on-site construction conditions of the two sides of a test roadway, stress load-off technology for asymmetric hole construction on the two sides of a roadway is proposed. The asymmetric stress load-off technique is a new method; while the shallow surrounding rock of the roadway sides is strongly anchored via a full anchor cable support form, a group of large stress load-off holes near the deep stress peak line of the roadway sides is excavated to relieve pressure and protect the roadway. This technology can transfer the peak stress area of the roadway side deeper into f the surrounding rock without deteriorating the shallow surrounding rock strength and damaging the supporting structure. A numerical simulation analysis of asymmetric stress load-off on the two sides of the roadway was performed, the stress load-off effect evaluation index was established, and the optimal field construction parameters were obtained. The stress load-off parameters obtained from the study are applicable to field engineering practice. Mine pressure data reveal that the test roadway remains intact and stable during the use period when the asymmetric stress load-off technique is adopted.

Abstract Image

深部巷道两侧创新非对称造孔应力卸载机理及关键参数
传统的致密大直径钻孔应力卸荷技术降低了浅埋围岩的应力水平,削弱了浅埋围岩的承载能力,使浅埋围岩强度和支护结构大大恶化,不利于维持巷道的长期稳定。因此,为解决巷道两侧明显的挤压变形和两侧锚杆、锚索支撑的浅埋围岩整体外移的控制问题,并综合考虑试验巷道两侧现场施工条件,提出巷道两侧非对称开孔应力卸荷技术。不对称应力卸荷技术是一种新的卸荷方法;在采用全锚索支护形式对巷道侧浅围岩进行强锚固的同时,在巷道侧深部应力峰值线附近开挖一组大型应力卸荷孔,起到卸压保护巷道的作用。该技术可将巷道侧应力峰值区向围岩深处转移,而不降低浅埋围岩强度,不破坏支护结构。对巷道两侧不对称应力卸荷进行了数值模拟分析,建立了应力卸荷效果评价指标,得到了最优现场施工参数。研究所得的应力卸载参数适用于现场工程实践。矿井压力数据表明,采用非对称应力卸荷技术后,试验巷道在使用期内保持完整稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.40
自引率
8.40%
发文量
678
审稿时长
12 weeks
期刊介绍: The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field. The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects. The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信