{"title":"Comparative study on the flame retardancy of CO2 and N2 during coal adiabatic oxidation process","authors":"Xiyang Fang, Bo Tan, Haiyan Wang","doi":"10.1007/s40789-023-00652-y","DOIUrl":null,"url":null,"abstract":"<p>To test the effectiveness of N<sub>2</sub> and CO<sub>2</sub> in preventing coal from spontaneously combusting, researchers used an adiabatic oxidation apparatus to conduct an experiment with different temperature starting points. Non-adsorbed helium (He) was used as a reference gas, and coal and oxygen concentration temperature variations were analyzed after inerting. The results showed that He had the best cooling effect, N<sub>2</sub> was second, and CO<sub>2</sub> was the worst. At 70℃ and 110℃, the impact of different gases on reducing oxygen concentration and the cooling effect was the same. However, at the starting temperature of 150℃, CO<sub>2</sub> was less effective in lowering oxygen concentration at the later stage than He and N<sub>2</sub>. N<sub>2</sub> and CO<sub>2</sub> can prolong the flame retardation time of inert gas and reduce oxygen displacement with an initial temperature increase. When the starting temperature is the same, N<sub>2</sub> injection cools coal samples and replaces oxygen more effectively than CO<sub>2</sub> injection. The flame retardancy of inert gas is the combined result of the cooling effect of inert gas and the replacement of oxygen. These findings are essential for using inert flame retardant technology in the goaf.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"191 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-023-00652-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
To test the effectiveness of N2 and CO2 in preventing coal from spontaneously combusting, researchers used an adiabatic oxidation apparatus to conduct an experiment with different temperature starting points. Non-adsorbed helium (He) was used as a reference gas, and coal and oxygen concentration temperature variations were analyzed after inerting. The results showed that He had the best cooling effect, N2 was second, and CO2 was the worst. At 70℃ and 110℃, the impact of different gases on reducing oxygen concentration and the cooling effect was the same. However, at the starting temperature of 150℃, CO2 was less effective in lowering oxygen concentration at the later stage than He and N2. N2 and CO2 can prolong the flame retardation time of inert gas and reduce oxygen displacement with an initial temperature increase. When the starting temperature is the same, N2 injection cools coal samples and replaces oxygen more effectively than CO2 injection. The flame retardancy of inert gas is the combined result of the cooling effect of inert gas and the replacement of oxygen. These findings are essential for using inert flame retardant technology in the goaf.
期刊介绍:
The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field.
The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects.
The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.