{"title":"Soft splicing model: bridging the gap between composite model and finite mixture model","authors":"Tsz Chai Fung, Himchan Jeong, George Tzougas","doi":"10.1080/03461238.2023.2234914","DOIUrl":null,"url":null,"abstract":"<p>Considerations of both the heavy-tail phenomenon and multi-modality of a claim severity distribution have been challenging in the actuarial literature and practices. In this article, we develop a novel class of soft splicing models that bridges the gap between pre-existing methods for handling the issues above. The proposed method is flexible enough to incorporate tail-heaviness and multi-modality with computational efficiency and nests finite mixture models and splicing models as its special and/or limiting cases. The soft splicing model is also more robust in extrapolating the tail-heaviness of distribution subject to model contamination. According to simulation studies and real insurance claim data analyses, it is shown that the proposed soft splicing model provides superior goodness-of-fit and more accurate estimates of tail risk measures than both finite mixture and composite models.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/03461238.2023.2234914","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Considerations of both the heavy-tail phenomenon and multi-modality of a claim severity distribution have been challenging in the actuarial literature and practices. In this article, we develop a novel class of soft splicing models that bridges the gap between pre-existing methods for handling the issues above. The proposed method is flexible enough to incorporate tail-heaviness and multi-modality with computational efficiency and nests finite mixture models and splicing models as its special and/or limiting cases. The soft splicing model is also more robust in extrapolating the tail-heaviness of distribution subject to model contamination. According to simulation studies and real insurance claim data analyses, it is shown that the proposed soft splicing model provides superior goodness-of-fit and more accurate estimates of tail risk measures than both finite mixture and composite models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.