{"title":"Identifying Geographical Heterogeneity in Associations between Under-Five Child Nutritional Status and Its Correlates Across Indian Districts","authors":"Monirujjaman Biswas","doi":"10.1007/s40980-022-00104-2","DOIUrl":null,"url":null,"abstract":"<p>India has substantially reduced the burden of under-five child malnutrition over the last two decades. Despite this, it is still gigantic and differs remarkably across districts, while the demographic and socio-economic groups are most affected by it. This paper aimed to decrypt the place-specific spatial dependence and heterogeneity in associations between district-level nutritional status (stunting, wasting and underweight) and its considered correlates using a geocoded database for all 640 Indian districts from the latest fourth wave of the National Family Health Survey, 2015–16. Univariate Moran’s <i>I</i> and LISA statistics were used to confirm the spatial clustering and dependence in under-five nutritional status. The Ordinary Least Square (OLS), Geographically Weighted Regression (GWR), Spatial (lag/error) models were employed to examine the effects of correlates on the district-level nutritional status. The mean (Moran’s <i>I</i>) district-level stunting, wasting and underweight were 38% (0.634), 21% (0.488) and 36% (0.721), respectively. The GWR results disclosed that the spatial heterogeneity in relationships between district-level nutritional status and its driving forces were strongly location-based, altering their direction, magnitude and strength across districts. Overall, the localized model performed better, and best fit the data than the OLS and spatial (lag/error) models. This nationwide study confirmed that the spatial dependencies and heterogeneities in the district-level nutritional status indicators were strongly explained by a multitude of factors and thus can help policymakers in formulating effective nutrition-specific programmatic interventions to speed up the coverage of under-five malnutrition status in most priority districts and geographical hot spots across India.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40980-022-00104-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
India has substantially reduced the burden of under-five child malnutrition over the last two decades. Despite this, it is still gigantic and differs remarkably across districts, while the demographic and socio-economic groups are most affected by it. This paper aimed to decrypt the place-specific spatial dependence and heterogeneity in associations between district-level nutritional status (stunting, wasting and underweight) and its considered correlates using a geocoded database for all 640 Indian districts from the latest fourth wave of the National Family Health Survey, 2015–16. Univariate Moran’s I and LISA statistics were used to confirm the spatial clustering and dependence in under-five nutritional status. The Ordinary Least Square (OLS), Geographically Weighted Regression (GWR), Spatial (lag/error) models were employed to examine the effects of correlates on the district-level nutritional status. The mean (Moran’s I) district-level stunting, wasting and underweight were 38% (0.634), 21% (0.488) and 36% (0.721), respectively. The GWR results disclosed that the spatial heterogeneity in relationships between district-level nutritional status and its driving forces were strongly location-based, altering their direction, magnitude and strength across districts. Overall, the localized model performed better, and best fit the data than the OLS and spatial (lag/error) models. This nationwide study confirmed that the spatial dependencies and heterogeneities in the district-level nutritional status indicators were strongly explained by a multitude of factors and thus can help policymakers in formulating effective nutrition-specific programmatic interventions to speed up the coverage of under-five malnutrition status in most priority districts and geographical hot spots across India.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.