On the Sensitivity of the Canonical Angles of a Unitoid Matrix

IF 0.4 Q4 MATHEMATICS, APPLIED
Kh. D. Ikramov, A. M. Nazari
{"title":"On the Sensitivity of the Canonical Angles of a Unitoid Matrix","authors":"Kh. D. Ikramov, A. M. Nazari","doi":"10.1134/s199542392204005x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A unitoid matrix is a square complex matrix that can be brought to diagonal form by a Hermitian congruence transformation. The canonical angles of a nonsingular unitoid matrix <span>\\(A\\)</span> are (up to the factor 1/2) the arguments of the eigenvalues of the cosquare of <span>\\(A\\)</span>, which is the matrix <span>\\(A^{-*}A\\)</span>. We derive an estimate for the derivative of an eigenvalue of the cosquare in the direction of the perturbation in <span>\\(A^{-*}A\\)</span> caused by a perturbation in <span>\\(A\\)</span>.</p>","PeriodicalId":43697,"journal":{"name":"Numerical Analysis and Applications","volume":"83 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s199542392204005x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A unitoid matrix is a square complex matrix that can be brought to diagonal form by a Hermitian congruence transformation. The canonical angles of a nonsingular unitoid matrix \(A\) are (up to the factor 1/2) the arguments of the eigenvalues of the cosquare of \(A\), which is the matrix \(A^{-*}A\). We derive an estimate for the derivative of an eigenvalue of the cosquare in the direction of the perturbation in \(A^{-*}A\) caused by a perturbation in \(A\).

论酉阵正则角的灵敏度
一元矩阵是一种可以通过厄米同余变换转化为对角形式的平方复矩阵。非奇异单位阵\(A\)的规范角是(直到因子1/2)\(A\)的余方的特征值的参数,也就是矩阵\(A^{-*}A\)。我们导出了由\(A\)中的扰动引起的\(A^{-*}A\)中扰动方向上的余方特征值的导数的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Numerical Analysis and Applications
Numerical Analysis and Applications MATHEMATICS, APPLIED-
CiteScore
1.00
自引率
0.00%
发文量
22
期刊介绍: Numerical Analysis and Applications is the translation of Russian periodical Sibirskii Zhurnal Vychislitel’noi Matematiki (Siberian Journal of Numerical Mathematics) published by the Siberian Branch of the Russian Academy of Sciences Publishing House since 1998. The aim of this journal is to demonstrate, in concentrated form, to the Russian and International Mathematical Community the latest and most important investigations of Siberian numerical mathematicians in various scientific and engineering fields. The journal deals with the following topics: Theory and practice of computational methods, mathematical physics, and other applied fields; Mathematical models of elasticity theory, hydrodynamics, gas dynamics, and geophysics; Parallelizing of algorithms; Models and methods of bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信