The Homogeneous Gray image of linear codes over the Galois ring GR(4, m)

Hamidreza Eyvazi, Karim Samei, Batoul Savari
{"title":"The Homogeneous Gray image of linear codes over the Galois ring GR(4, m)","authors":"Hamidreza Eyvazi, Karim Samei, Batoul Savari","doi":"10.1007/s12095-023-00683-x","DOIUrl":null,"url":null,"abstract":"<p>Let <i>R</i> be the Galois ring of characteristic 4 and cardinality <span>\\(4^{m}\\)</span>, where <i>m</i> is a natural number. Let <span>\\( \\mathcal {C} \\)</span> be a linear code of length <i>n</i> over <i>R</i> and <span>\\(\\Phi \\)</span> be the Homogeneous Gray map on <span>\\(R^n\\)</span>. In this paper, we show that <span>\\(\\Phi (\\mathcal {C})\\)</span> is linear if and only if for every <span>\\(\\varvec{X}, \\varvec{Y}\\in \\mathcal {C} \\)</span>, <span>\\(2(\\varvec{X} \\odot \\varvec{Y})\\in \\mathcal {C}\\)</span>. Using the generator polynomial of a cyclic code of odd length over <i>R</i>, a necessary and sufficient condition is given which its Gray image is linear.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-023-00683-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be the Galois ring of characteristic 4 and cardinality \(4^{m}\), where m is a natural number. Let \( \mathcal {C} \) be a linear code of length n over R and \(\Phi \) be the Homogeneous Gray map on \(R^n\). In this paper, we show that \(\Phi (\mathcal {C})\) is linear if and only if for every \(\varvec{X}, \varvec{Y}\in \mathcal {C} \), \(2(\varvec{X} \odot \varvec{Y})\in \mathcal {C}\). Using the generator polynomial of a cyclic code of odd length over R, a necessary and sufficient condition is given which its Gray image is linear.

伽罗瓦环GR(4,m)上线性码的均匀灰度图像
设R为特征为4,基数为\(4^{m}\)的伽罗瓦环,其中m为自然数。设\( \mathcal {C} \)为长度为n / R的线性码,\(\Phi \)为\(R^n\)上的齐次灰度图。在本文中,我们证明了\(\Phi (\mathcal {C})\)是线性的当且仅当对于每个\(\varvec{X}, \varvec{Y}\in \mathcal {C} \), \(2(\varvec{X} \odot \varvec{Y})\in \mathcal {C}\)。利用长度为奇数/ R的循环码的生成多项式,给出了其灰度图像为线性的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信