The behaviour of a forced spherical pendulum operating in a weightless environment

IF 0.8
R E Grundy
{"title":"The behaviour of a forced spherical pendulum operating in a weightless environment","authors":"R E Grundy","doi":"10.1093/qjmam/hbad008","DOIUrl":null,"url":null,"abstract":"Summary In this article, we show that by subjecting the pivot of a simple inextensible pendulum to small amplitude high frequency rectilinear oscillations it is possible to make it operate in a weightless environment. The axis of vibration of the pivot defines a preferred direction in space and a consequential dynamical structure which is completely absent when the pivot is fixed. Using spherical polar coordinates centred at the pivot, we show that the motion of such a pendulum has fast and slow-scale components which we analyse using the method of multiple scales. The slow scale equation for the polar angle is autonomous, and a phase plane analysis reveals the essential orbital structure including the existence of conical solutions analogous to the terrestrial fixed pivot conical pendulum. In the absence of an azimuthal velocity component, its behaviour can provide a direct simulation of a plane terrestrial simple fixed pivot pendulum with a correspondingly simple form for the small amplitude period. We can also use a two-scale analysis to examine the effects of damping. Here, the slow scale polar equation has two asymptotically stable states, and we employ a combination of numerical and asymptotic analyses to elicit the slow scale orbital trajectories.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"21 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/qjmam/hbad008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary In this article, we show that by subjecting the pivot of a simple inextensible pendulum to small amplitude high frequency rectilinear oscillations it is possible to make it operate in a weightless environment. The axis of vibration of the pivot defines a preferred direction in space and a consequential dynamical structure which is completely absent when the pivot is fixed. Using spherical polar coordinates centred at the pivot, we show that the motion of such a pendulum has fast and slow-scale components which we analyse using the method of multiple scales. The slow scale equation for the polar angle is autonomous, and a phase plane analysis reveals the essential orbital structure including the existence of conical solutions analogous to the terrestrial fixed pivot conical pendulum. In the absence of an azimuthal velocity component, its behaviour can provide a direct simulation of a plane terrestrial simple fixed pivot pendulum with a correspondingly simple form for the small amplitude period. We can also use a two-scale analysis to examine the effects of damping. Here, the slow scale polar equation has two asymptotically stable states, and we employ a combination of numerical and asymptotic analyses to elicit the slow scale orbital trajectories.
在失重环境下工作的受迫球摆的行为
在这篇文章中,我们表明,通过使一个简单的不可伸缩摆的枢轴受到小振幅高频直线振荡,有可能使它在失重环境中工作。枢轴的振动轴在空间中定义了一个优选方向和相应的动力结构,当枢轴固定时完全不存在。利用以枢轴为中心的球极坐标,我们证明了这种摆的运动具有快速和慢尺度分量,我们使用多尺度方法对其进行了分析。极角的慢尺度方程是自治的,相平面分析揭示了其基本轨道结构,包括类似于地面固定枢轴圆锥摆的圆锥解的存在。在没有方位速度分量的情况下,它的行为可以提供一个平面陆地简单固定枢轴摆的直接模拟,在小振幅周期内具有相应的简单形式。我们还可以使用双尺度分析来检验阻尼的影响。这里,慢尺度极方程具有两个渐近稳定状态,我们采用数值分析和渐近分析相结合的方法推导出慢尺度轨道轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信