Badal Joshi, Nidhi Kaihnsa, Tung D. Nguyen, Anne Shiu
{"title":"Prevalence of Multistationarity and Absolute Concentration Robustness in Reaction Networks","authors":"Badal Joshi, Nidhi Kaihnsa, Tung D. Nguyen, Anne Shiu","doi":"10.1137/23m1549316","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 83, Issue 6, Page 2260-2283, December 2023. <br/> Abstract. For reaction networks arising in systems biology, the capacity for two or more steady states, that is, multistationarity, is an important property that underlies biochemical switches. Another property receiving much attention recently is absolute concentration robustness (ACR), which means that some species concentration is the same at all positive steady states. In this work, we investigate the prevalence of each property while paying close attention to when the properties occur together. Specifically, we consider a stochastic block framework for generating random networks and prove edge-probability thresholds at which, with high probability, multistationarity appears and ACR becomes rare. We also show that the small window in which both properties occur only appears in networks with many species. Taken together, our results confirm that, in random reversible networks, ACR and multistationarity together, or even ACR on its own, is highly atypical. Our proofs rely on two prior results, one pertaining to the prevalence of networks with deficiency zero and the other “lifting” multistationarity from small networks to larger ones.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1549316","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
SIAM Journal on Applied Mathematics, Volume 83, Issue 6, Page 2260-2283, December 2023. Abstract. For reaction networks arising in systems biology, the capacity for two or more steady states, that is, multistationarity, is an important property that underlies biochemical switches. Another property receiving much attention recently is absolute concentration robustness (ACR), which means that some species concentration is the same at all positive steady states. In this work, we investigate the prevalence of each property while paying close attention to when the properties occur together. Specifically, we consider a stochastic block framework for generating random networks and prove edge-probability thresholds at which, with high probability, multistationarity appears and ACR becomes rare. We also show that the small window in which both properties occur only appears in networks with many species. Taken together, our results confirm that, in random reversible networks, ACR and multistationarity together, or even ACR on its own, is highly atypical. Our proofs rely on two prior results, one pertaining to the prevalence of networks with deficiency zero and the other “lifting” multistationarity from small networks to larger ones.
期刊介绍:
SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.