Experimental design for a novel co-flow jet airfoil

IF 2.9 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Hao Jiang, Weigang Yao, Min Xu
{"title":"Experimental design for a novel co-flow jet airfoil","authors":"Hao Jiang, Weigang Yao, Min Xu","doi":"10.1186/s42774-023-00161-1","DOIUrl":null,"url":null,"abstract":"The Co-flow Jet (CFJ) technology holds significant promise for enhancing aerodynamic efficiency and furthering decarbonization in the evolving landscape of air transportation. The aim of this study is to empirically validate an optimized CFJ airfoil through low-speed wind tunnel experiments. The CFJ airfoil is structured in a tri-sectional design, consisting of one experimental segment and two stationary segments. A support rod penetrates the airfoil, fulfilling dual roles: it not only maintains the structural integrity of the overall model but also enables the direct measurement of aerodynamic forces on the test section of the CFJ airfoil within a two-dimensional wind tunnel. In parallel, the stationary segments are designed to effectively minimize the interference from the lateral tunnel walls. The experimental results are compared with numerical simulations, specifically focusing on aerodynamic parameters and flow field distribution. The findings reveal that the experimental framework employed is highly effective in characterizing the aerodynamic behavior of the CFJ airfoil, showing strong agreement with the simulation data.","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"47 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s42774-023-00161-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Co-flow Jet (CFJ) technology holds significant promise for enhancing aerodynamic efficiency and furthering decarbonization in the evolving landscape of air transportation. The aim of this study is to empirically validate an optimized CFJ airfoil through low-speed wind tunnel experiments. The CFJ airfoil is structured in a tri-sectional design, consisting of one experimental segment and two stationary segments. A support rod penetrates the airfoil, fulfilling dual roles: it not only maintains the structural integrity of the overall model but also enables the direct measurement of aerodynamic forces on the test section of the CFJ airfoil within a two-dimensional wind tunnel. In parallel, the stationary segments are designed to effectively minimize the interference from the lateral tunnel walls. The experimental results are compared with numerical simulations, specifically focusing on aerodynamic parameters and flow field distribution. The findings reveal that the experimental framework employed is highly effective in characterizing the aerodynamic behavior of the CFJ airfoil, showing strong agreement with the simulation data.
新型共流射流翼型的实验设计
在不断发展的航空运输领域,共流射流(CFJ)技术在提高气动效率和进一步脱碳方面具有重要的前景。本研究的目的是通过低速风洞实验对优化后的CFJ翼型进行实证验证。CFJ翼型结构为三截面设计,由一个实验段和两个固定段组成。支撑杆穿透翼型,实现双重作用:它不仅保持整体模型的结构完整性,而且能够在二维风洞内直接测量CFJ翼型测试部分的气动力。同时,固定段的设计有效地减少了来自侧隧道壁的干扰。将实验结果与数值模拟结果进行了比较,重点研究了气动参数和流场分布。研究结果表明,所采用的实验框架在表征CFJ翼型的气动特性方面是非常有效的,与仿真数据具有很强的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
4.30%
发文量
35
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信