Experimental investigation on vibration characteristics of the medium–low-speed maglev vehicle–turnout coupled system

IF 4.4 1区 工程技术 Q2 TRANSPORTATION SCIENCE & TECHNOLOGY
Li, Miao, Gao, Dinggang, Li, Tie, Luo, Shihui, Ma, Weihua, Chen, Xiaohao
{"title":"Experimental investigation on vibration characteristics of the medium–low-speed maglev vehicle–turnout coupled system","authors":"Li, Miao, Gao, Dinggang, Li, Tie, Luo, Shihui, Ma, Weihua, Chen, Xiaohao","doi":"10.1007/s40534-021-00266-7","DOIUrl":null,"url":null,"abstract":"<p>The steel turnout is one of the key components in the medium–low-speed maglev line system. However, the vehicle under active control is prone to vehicle–turnout coupled vibration, and thus, it is necessary to identify the vibration characteristics of this coupled system through field tests. To this end, dynamic performance tests were conducted on a vehicle–turnout coupled system in a medium–low-speed maglev test line. Firstly, the dynamic response data of the coupled system under various operating conditions were obtained. Then, the natural vibration characteristics of the turnout were analysed using the free attenuation method and the finite element method, indicating a good agreement between the simulation results and the measured results; the acceleration response characteristics of the coupled system were analysed in detail, and the ride quality of the vehicle was assessed by Sperling index. Finally, the frequency distribution characteristics of the coupled system were discussed. All these test results could provide references for model validation and optimized design of medium–low-speed maglev transport systems.</p>","PeriodicalId":41270,"journal":{"name":"Railway Engineering Science","volume":"39 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Railway Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40534-021-00266-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

The steel turnout is one of the key components in the medium–low-speed maglev line system. However, the vehicle under active control is prone to vehicle–turnout coupled vibration, and thus, it is necessary to identify the vibration characteristics of this coupled system through field tests. To this end, dynamic performance tests were conducted on a vehicle–turnout coupled system in a medium–low-speed maglev test line. Firstly, the dynamic response data of the coupled system under various operating conditions were obtained. Then, the natural vibration characteristics of the turnout were analysed using the free attenuation method and the finite element method, indicating a good agreement between the simulation results and the measured results; the acceleration response characteristics of the coupled system were analysed in detail, and the ride quality of the vehicle was assessed by Sperling index. Finally, the frequency distribution characteristics of the coupled system were discussed. All these test results could provide references for model validation and optimized design of medium–low-speed maglev transport systems.

中低速磁悬浮车辆-道岔耦合系统振动特性试验研究
钢道岔是中低速磁浮线路系统的关键部件之一。然而,在主动控制下的车辆容易发生车道岔耦合振动,因此有必要通过现场试验来识别这种耦合系统的振动特性。为此,在某中低速磁悬浮试验线上对车辆-道岔耦合系统进行了动态性能试验。首先,获得了耦合系统在不同工况下的动态响应数据。然后,采用自由衰减法和有限元法对道岔的自振特性进行了分析,仿真结果与实测结果吻合较好;详细分析了耦合系统的加速度响应特性,并采用Sperling指数对整车平顺性进行了评价。最后,讨论了耦合系统的频率分布特性。试验结果可为中低速磁悬浮运输系统的模型验证和优化设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Railway Engineering Science
Railway Engineering Science TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
10.80
自引率
7.90%
发文量
1061
审稿时长
15 weeks
期刊介绍: Railway Engineering Science is an international, peer-reviewed, and free open-access journal that publishes original research articles and comprehensive reviews related to fundamental engineering science and emerging technologies in rail transit systems, focusing on the cutting-edge research in high-speed railway, heavy-haul railway, urban rail transit, maglev system, hyperloop transportation, etc. The main goal of the journal is to maintain high quality of publications, serving as a medium for railway academia and industry to exchange new ideas and share the latest achievements in scientific research, technical innovation and industrial development in railway science and engineering. The topics include but are not limited to Design theory and construction technology System dynamics and safetyElectrification, signaling and communicationOperation and maintenanceSystem health monitoring and reliability Environmental impact and sustainabilityCutting-edge technologiesThe publication costs for Railway Engineering Science are fully covered by Southwest Jiaotong University so authors do not need to pay any article-processing charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信