Common probability-based interactive algorithms for group decision making with normalized probability linguistic preference relations

IF 4.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jie Tang, Fanyong Meng, Yongliang Zhang
{"title":"Common probability-based interactive algorithms for group decision making with normalized probability linguistic preference relations","authors":"Jie Tang, Fanyong Meng, Yongliang Zhang","doi":"10.1007/s10700-021-09360-1","DOIUrl":null,"url":null,"abstract":"<p>Probabilistic linguistic variable is a kind of powerful qualitative fuzzy sets, which permits the decision makers (DMs) to apply several linguistic variables with probabilities to denote a judgment. This paper studies group decision making (GDM) with normalized probability linguistic preference relations (NPLPRs). To achieve this goal, an acceptably multiplicative consistency based interactive algorithm is provided to derive common probability linguistic preference relations (CPLPRs) from PLPRs, by which a new acceptably multiplicative consistency concept for NPLPRs is defined. When the multiplicative consistency of NPLPRs is unacceptable, models for deriving acceptably multiplicatively consistent NPLPRs are constructed. Then, it studies incomplete NPLPRs (InNPLPRs) and offers a common probability and acceptably multiplicative consistency based interactive algorithm to determine missing judgments. Furthermore, a correlation coefficient between CPLPRs is provided, by which the weights of the DMs are ascertained. Meanwhile, a consensus index based on CPLPRs is defined. When the consensus does not reach the requirement, a model to increase the level of consensus is built that can ensure the adjusted LPRs to meet the multiplicative consistency and consensus requirement. Moreover, an interactive algorithm for GDM with NPLPRs is provided, which can address unacceptably multiplicatively consistent InNPLPRs. Finally, an example about the evaluation of green design schemes for new energy vehicles is provided to indicate the application of the new algorithm and comparative analysis is conducted.</p>","PeriodicalId":55131,"journal":{"name":"Fuzzy Optimization and Decision Making","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Optimization and Decision Making","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10700-021-09360-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5

Abstract

Probabilistic linguistic variable is a kind of powerful qualitative fuzzy sets, which permits the decision makers (DMs) to apply several linguistic variables with probabilities to denote a judgment. This paper studies group decision making (GDM) with normalized probability linguistic preference relations (NPLPRs). To achieve this goal, an acceptably multiplicative consistency based interactive algorithm is provided to derive common probability linguistic preference relations (CPLPRs) from PLPRs, by which a new acceptably multiplicative consistency concept for NPLPRs is defined. When the multiplicative consistency of NPLPRs is unacceptable, models for deriving acceptably multiplicatively consistent NPLPRs are constructed. Then, it studies incomplete NPLPRs (InNPLPRs) and offers a common probability and acceptably multiplicative consistency based interactive algorithm to determine missing judgments. Furthermore, a correlation coefficient between CPLPRs is provided, by which the weights of the DMs are ascertained. Meanwhile, a consensus index based on CPLPRs is defined. When the consensus does not reach the requirement, a model to increase the level of consensus is built that can ensure the adjusted LPRs to meet the multiplicative consistency and consensus requirement. Moreover, an interactive algorithm for GDM with NPLPRs is provided, which can address unacceptably multiplicatively consistent InNPLPRs. Finally, an example about the evaluation of green design schemes for new energy vehicles is provided to indicate the application of the new algorithm and comparative analysis is conducted.

基于归一化概率语言偏好关系的群体决策通用概率交互算法
概率语言变量是一种功能强大的定性模糊集,它允许决策者使用几个具有概率的语言变量来表示一个判断。本文研究了归一化概率语言偏好关系下的群体决策问题。为实现这一目标,提出了一种基于可接受乘性一致性的交互算法,从可接受乘性语言偏好关系中推导出共同概率语言偏好关系,并由此定义了一个新的可接受乘性语言偏好关系的一致性概念。当nplpr的乘一致性不可接受时,构建了可接受的乘一致性nplpr的推导模型。然后,研究了不完全nplpr (innplpr),提出了一种基于通用概率和可接受乘法一致性的交互式算法来确定缺失判断。此外,给出了cplpr之间的相关系数,以此确定dm的权重。同时,定义了基于cplpr的一致性指标。当共识不达到要求时,建立了一个提高共识水平的模型,以保证调整后的lpr满足乘法一致性和共识要求。此外,本文还提出了一种具有nplpr的GDM交互算法,该算法可以解决不可接受的乘性一致的inplpr。最后,以新能源汽车绿色设计方案评价为例,说明了新算法的应用,并进行了对比分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuzzy Optimization and Decision Making
Fuzzy Optimization and Decision Making 工程技术-计算机:人工智能
CiteScore
11.50
自引率
10.60%
发文量
27
审稿时长
6 months
期刊介绍: The key objective of Fuzzy Optimization and Decision Making is to promote research and the development of fuzzy technology and soft-computing methodologies to enhance our ability to address complicated optimization and decision making problems involving non-probabilitic uncertainty. The journal will cover all aspects of employing fuzzy technologies to see optimal solutions and assist in making the best possible decisions. It will provide a global forum for advancing the state-of-the-art theory and practice of fuzzy optimization and decision making in the presence of uncertainty. Any theoretical, empirical, and experimental work related to fuzzy modeling and associated mathematics, solution methods, and systems is welcome. The goal is to help foster the understanding, development, and practice of fuzzy technologies for solving economic, engineering, management, and societal problems. The journal will provide a forum for authors and readers in the fields of business, economics, engineering, mathematics, management science, operations research, and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信