{"title":"A comparative analysis of probabilistic linguistic preference relations and distributed preference relations for decision making","authors":"Min Xue, Chao Fu, Shanlin Yang","doi":"10.1007/s10700-021-09357-w","DOIUrl":null,"url":null,"abstract":"<p>When a decision-maker prefers to compare different alternatives in pairs to handle real situations, there are many different expression styles that can be used. Two representative expression styles are the probabilistic linguistic preference relation (PLPR), which originates from the fuzzy linguistic approach and the distributed preference relation (DPR), which originates from the evidential reasoning approach. Although these two expression styles look quite similar, their meanings, operations, and relevant decision making processes are significantly different. This presents the decision-maker with the challenge of selecting either PLPRs or DPRs in different real cases. To address this issue, this paper provides a detailed analysis of the similarities and differences between PLPRs and DPRs. The analysis is conducted from five perspectives, including modeling of decision making problems, handling of uncertainty, consistency between preference relations, information aggregation, and elicitation process. An engineer selection problem for an automobile manufacturing enterprise is investigated to demonstrate how to appropriately select PLPRs or DPRs to model and analyze decision making problems in real situations with consideration for the preferences of decision-makers.</p>","PeriodicalId":55131,"journal":{"name":"Fuzzy Optimization and Decision Making","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Optimization and Decision Making","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10700-021-09357-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6
Abstract
When a decision-maker prefers to compare different alternatives in pairs to handle real situations, there are many different expression styles that can be used. Two representative expression styles are the probabilistic linguistic preference relation (PLPR), which originates from the fuzzy linguistic approach and the distributed preference relation (DPR), which originates from the evidential reasoning approach. Although these two expression styles look quite similar, their meanings, operations, and relevant decision making processes are significantly different. This presents the decision-maker with the challenge of selecting either PLPRs or DPRs in different real cases. To address this issue, this paper provides a detailed analysis of the similarities and differences between PLPRs and DPRs. The analysis is conducted from five perspectives, including modeling of decision making problems, handling of uncertainty, consistency between preference relations, information aggregation, and elicitation process. An engineer selection problem for an automobile manufacturing enterprise is investigated to demonstrate how to appropriately select PLPRs or DPRs to model and analyze decision making problems in real situations with consideration for the preferences of decision-makers.
期刊介绍:
The key objective of Fuzzy Optimization and Decision Making is to promote research and the development of fuzzy technology and soft-computing methodologies to enhance our ability to address complicated optimization and decision making problems involving non-probabilitic uncertainty.
The journal will cover all aspects of employing fuzzy technologies to see optimal solutions and assist in making the best possible decisions. It will provide a global forum for advancing the state-of-the-art theory and practice of fuzzy optimization and decision making in the presence of uncertainty. Any theoretical, empirical, and experimental work related to fuzzy modeling and associated mathematics, solution methods, and systems is welcome. The goal is to help foster the understanding, development, and practice of fuzzy technologies for solving economic, engineering, management, and societal problems. The journal will provide a forum for authors and readers in the fields of business, economics, engineering, mathematics, management science, operations research, and systems.