Topological speedups for minimal Cantor systems

IF 0.8 2区 数学 Q2 MATHEMATICS
Drew D. Ash, Nicholas S. Ormes
{"title":"Topological speedups for minimal Cantor systems","authors":"Drew D. Ash, Nicholas S. Ormes","doi":"10.1007/s11856-023-2568-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study speedups of dynamical systems in the topological category. Specifically, we characterize when one minimal homeomorphism on a Cantor space is the speedup of another. We go on to provide a characterization for strong speedups, i.e., when the jump function has at most one point of discontinuity. These results provide topological versions of the measure-theoretic results of Arnoux, Ornstein and Weiss, and are closely related to Giordano, Putnam and Skau’s characterization of orbit equivalence for minimal Cantor systems.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2568-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we study speedups of dynamical systems in the topological category. Specifically, we characterize when one minimal homeomorphism on a Cantor space is the speedup of another. We go on to provide a characterization for strong speedups, i.e., when the jump function has at most one point of discontinuity. These results provide topological versions of the measure-theoretic results of Arnoux, Ornstein and Weiss, and are closely related to Giordano, Putnam and Skau’s characterization of orbit equivalence for minimal Cantor systems.

最小康托系统的拓扑加速
本文研究了拓扑范畴下动力系统的加速问题。具体来说,我们刻画了康托尔空间上的一个极小同胚是另一个极小同胚的加速。我们继续提供强加速的表征,即当跳跃函数最多有一个不连续点时。这些结果提供了Arnoux, Ornstein和Weiss测量理论结果的拓扑版本,并且与Giordano, Putnam和Skau对最小康托尔系统的轨道等价的表征密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信