Ramsey theory over partitions II: Negative Ramsey relations and pump-up theorems

IF 0.8 2区 数学 Q2 MATHEMATICS
Menachem Kojman, Assaf Rinot, Juris Steprāns
{"title":"Ramsey theory over partitions II: Negative Ramsey relations and pump-up theorems","authors":"Menachem Kojman, Assaf Rinot, Juris Steprāns","doi":"10.1007/s11856-023-2574-9","DOIUrl":null,"url":null,"abstract":"<p>In this series of papers we advance Ramsey theory over partitions. In this part, we concentrate on anti-Ramsey relations, or, as they are better known, strong colorings, and in particular solve two problems from [CKS21].</p><p>It is shown that for every infinite cardinal λ, a strong coloring on λ<sup>+</sup> by λ colors over a partition can be stretched to one with λ<sup>+</sup> colors over the same partition. Also, a sufficient condition is given for when a strong coloring witnessing Pr<sub>1</sub>(…) over a partition may be improved to witness Pr<sub>0</sub>(…).</p><p>Since the classical theory corresponds to the special case of a partition with just one cell, the two results generalize pump-up theorems due to Eisworth and Shelah, respectively.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2574-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

In this series of papers we advance Ramsey theory over partitions. In this part, we concentrate on anti-Ramsey relations, or, as they are better known, strong colorings, and in particular solve two problems from [CKS21].

It is shown that for every infinite cardinal λ, a strong coloring on λ+ by λ colors over a partition can be stretched to one with λ+ colors over the same partition. Also, a sufficient condition is given for when a strong coloring witnessing Pr1(…) over a partition may be improved to witness Pr0(…).

Since the classical theory corresponds to the special case of a partition with just one cell, the two results generalize pump-up theorems due to Eisworth and Shelah, respectively.

分区上的拉姆齐理论II:负拉姆齐关系和泵送定理
在这一系列的论文中,我们提出了拉姆齐分区理论。在这一部分中,我们将专注于反拉姆齐关系,或者,正如他们更广为人知的那样,强着色,并特别解决[CKS21]中的两个问题。证明了对于每一个无限基数λ,一个分区上λ+上的λ色强着色可以被拉伸成一个分区上λ+色强着色。同时,给出了分区上的强着色见证Pr1(…)可以改进为见证Pr0(…)的充分条件。由于经典理论对应于只有一个单元格的划分的特殊情况,这两个结果分别推广了由Eisworth和Shelah提出的泵浦定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信