Claudia Schillings, Claudia Totzeck, Philipp Wacker
{"title":"Ensemble-Based Gradient Inference for Particle Methods in Optimization and Sampling","authors":"Claudia Schillings, Claudia Totzeck, Philipp Wacker","doi":"10.1137/22m1533281","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 3, Page 757-787, September 2023. <br/> Abstract. We propose an approach based on function evaluations and Bayesian inference to extract higher-order differential information of objective functions from a given ensemble of particles. Pointwise evaluation of some potential V in an ensemble contains implicit information about first- or higher-order derivatives, which can be made explicit with little computational effort (ensemble-based gradient inference). We suggest using this information for the improvement of established ensemble-based numerical methods for optimization and sampling such as consensus-based optimization and Langevin-based samplers. Numerical studies indicate that the augmented algorithms are often superior to their gradient-free variants; in particular, the augmented methods help the ensembles to escape their initial domain, to explore multimodal, non-Gaussian settings, and to speed up the collapse at the end of optimization dynamics. The code for the numerical examples in this manuscript can be found in the paper’s Github repository.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"14 8","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/22m1533281","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 3, Page 757-787, September 2023. Abstract. We propose an approach based on function evaluations and Bayesian inference to extract higher-order differential information of objective functions from a given ensemble of particles. Pointwise evaluation of some potential V in an ensemble contains implicit information about first- or higher-order derivatives, which can be made explicit with little computational effort (ensemble-based gradient inference). We suggest using this information for the improvement of established ensemble-based numerical methods for optimization and sampling such as consensus-based optimization and Langevin-based samplers. Numerical studies indicate that the augmented algorithms are often superior to their gradient-free variants; in particular, the augmented methods help the ensembles to escape their initial domain, to explore multimodal, non-Gaussian settings, and to speed up the collapse at the end of optimization dynamics. The code for the numerical examples in this manuscript can be found in the paper’s Github repository.
期刊介绍:
SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.