Accurate bias estimation with applications to focused model selection

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Ingrid Dæhlen, Nils Lid Hjort, Ingrid Hobæk Haff
{"title":"Accurate bias estimation with applications to focused model selection","authors":"Ingrid Dæhlen, Nils Lid Hjort, Ingrid Hobæk Haff","doi":"10.1111/sjos.12696","DOIUrl":null,"url":null,"abstract":"We derive approximations to the bias and squared bias with errors of order <math altimg=\"urn:x-wiley:sjos:media:sjos12696:sjos12696-math-0001\" display=\"inline\" location=\"graphic/sjos12696-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>o</mi>\n<mo stretchy=\"false\">(</mo>\n<mn>1</mn>\n<mo stretchy=\"false\">/</mo>\n<mi>n</mi>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ o\\left(1/n\\right) $$</annotation>\n</semantics></math> where <math altimg=\"urn:x-wiley:sjos:media:sjos12696:sjos12696-math-0002\" display=\"inline\" location=\"graphic/sjos12696-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>n</mi>\n</mrow>\n$$ n $$</annotation>\n</semantics></math> is the sample size. Our results hold for a large class of estimators, including quantiles, transformations of unbiased estimators, maximum likelihood estimators in (possibly) incorrectly specified models, and functions thereof. Furthermore, we use the approximations to derive estimators of the mean squared error (MSE) which are correct to order <math altimg=\"urn:x-wiley:sjos:media:sjos12696:sjos12696-math-0003\" display=\"inline\" location=\"graphic/sjos12696-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>o</mi>\n<mo stretchy=\"false\">(</mo>\n<mn>1</mn>\n<mo stretchy=\"false\">/</mo>\n<mi>n</mi>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ o\\left(1/n\\right) $$</annotation>\n</semantics></math>. Since the variance of many estimators is of order <math altimg=\"urn:x-wiley:sjos:media:sjos12696:sjos12696-math-0004\" display=\"inline\" location=\"graphic/sjos12696-math-0004.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>O</mi>\n<mo stretchy=\"false\">(</mo>\n<mn>1</mn>\n<mo stretchy=\"false\">/</mo>\n<mi>n</mi>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ O\\left(1/n\\right) $$</annotation>\n</semantics></math>, this level of precision is needed for the MSE estimator to properly take the variance into account. We also formulate a new focused information criterion (FIC) for model selection based on the estimators of the squared bias. Lastly, we illustrate the methods on data containing the number of battle deaths in all major inter-state wars between 1823 and the present day. The application illustrates the potentially large impact of using a less-accurate estimator of the squared bias.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"5 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12696","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We derive approximations to the bias and squared bias with errors of order o ( 1 / n ) $$ o\left(1/n\right) $$ where n $$ n $$ is the sample size. Our results hold for a large class of estimators, including quantiles, transformations of unbiased estimators, maximum likelihood estimators in (possibly) incorrectly specified models, and functions thereof. Furthermore, we use the approximations to derive estimators of the mean squared error (MSE) which are correct to order o ( 1 / n ) $$ o\left(1/n\right) $$ . Since the variance of many estimators is of order O ( 1 / n ) $$ O\left(1/n\right) $$ , this level of precision is needed for the MSE estimator to properly take the variance into account. We also formulate a new focused information criterion (FIC) for model selection based on the estimators of the squared bias. Lastly, we illustrate the methods on data containing the number of battle deaths in all major inter-state wars between 1823 and the present day. The application illustrates the potentially large impact of using a less-accurate estimator of the squared bias.
准确的偏差估计与集中模型选择的应用
我们得到偏差和平方偏差的近似值,误差为o(1/n) $$ o\left(1/n\right) $$阶,其中n $$ n $$是样本量。我们的结果适用于大量的估计量,包括分位数、无偏估计量的变换、(可能)不正确指定模型中的最大似然估计量及其函数。此外,我们使用近似来推导均方误差(MSE)的估计量,其正确到o(1/n) $$ o\left(1/n\right) $$阶。由于许多估计器的方差为O(1/n) $$ O\left(1/n\right) $$阶,因此MSE估计器需要这种精度才能适当地考虑方差。我们还提出了一个新的基于偏差平方估计量的模型选择聚焦信息准则(FIC)。最后,我们说明了在1823年至今的所有主要国家间战争中包含战斗死亡人数的数据的方法。该应用说明了使用不太精确的偏差平方估计器可能产生的巨大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scandinavian Journal of Statistics
Scandinavian Journal of Statistics 数学-统计学与概率论
CiteScore
1.80
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia. It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications. The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems. The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信