{"title":"Hedging goals","authors":"Thomas Krabichler, Marcus Wunsch","doi":"10.1007/s11408-023-00437-y","DOIUrl":null,"url":null,"abstract":"<p>Goal-based investing is concerned with reaching a monetary investment goal by a given finite deadline, which differs from mean-variance optimization in modern portfolio theory. In this article, we expand the close connection between goal-based investing and option hedging that was originally discovered in Browne (Adv Appl Probab 31(2):551–577, 1999) by allowing for varying degrees of investor risk aversion using lower partial moments of different orders. Moreover, we show that maximizing the probability of reaching the goal (quantile hedging, cf. Föllmer and Leukert in Finance Stoch 3:251–273, 1999) and minimizing the expected shortfall (efficient hedging, cf. Föllmer and Leukert in Finance Stoch 4:117–146, 2000) yield, in fact, the same optimal investment policy. We furthermore present an innovative and model-free approach to goal-based investing using methods of reinforcement learning. To the best of our knowledge, we offer the first algorithmic approach to goal-based investing that can find optimal solutions in the presence of transaction costs.</p>","PeriodicalId":44895,"journal":{"name":"Financial Markets and Portfolio Management","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Markets and Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11408-023-00437-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1
Abstract
Goal-based investing is concerned with reaching a monetary investment goal by a given finite deadline, which differs from mean-variance optimization in modern portfolio theory. In this article, we expand the close connection between goal-based investing and option hedging that was originally discovered in Browne (Adv Appl Probab 31(2):551–577, 1999) by allowing for varying degrees of investor risk aversion using lower partial moments of different orders. Moreover, we show that maximizing the probability of reaching the goal (quantile hedging, cf. Föllmer and Leukert in Finance Stoch 3:251–273, 1999) and minimizing the expected shortfall (efficient hedging, cf. Föllmer and Leukert in Finance Stoch 4:117–146, 2000) yield, in fact, the same optimal investment policy. We furthermore present an innovative and model-free approach to goal-based investing using methods of reinforcement learning. To the best of our knowledge, we offer the first algorithmic approach to goal-based investing that can find optimal solutions in the presence of transaction costs.
期刊介绍:
The journal Financial Markets and Portfolio Management invites submissions of original research articles in all areas of finance, especially in – but not limited to – financial markets, portfolio choice and wealth management, asset pricing, risk management, and regulation. Its principal objective is to publish high-quality articles of innovative research and practical application. The readers of Financial Markets and Portfolio Management are academics and professionals in finance and economics, especially in the areas of asset management. FMPM publishes academic and applied research articles, shorter ''Perspectives'' and survey articles on current topics of interest to the financial community, as well as book reviews. All article submissions are subject to a double-blind peer review. http://www.fmpm.org
Officially cited as: Financ Mark Portf Manag