Moment-Type Estimators for the Dirichlet and the Multivariate Gamma Distributions

Ioannis Oikonomidis, Samis Trevezas
{"title":"Moment-Type Estimators for the Dirichlet and the Multivariate Gamma Distributions","authors":"Ioannis Oikonomidis, Samis Trevezas","doi":"arxiv-2311.15025","DOIUrl":null,"url":null,"abstract":"This study presents new closed-form estimators for the Dirichlet and the\nMultivariate Gamma distribution families, whose maximum likelihood estimator\ncannot be explicitly derived. The methodology builds upon the score-adjusted\nestimators for the Beta and Gamma distributions, extending their applicability\nto the Dirichlet and Multivariate Gamma distributions. Expressions for the\nasymptotic variance-covariance matrices are provided, demonstrating the\nsuperior performance of score-adjusted estimators over the traditional moment\nones. Leveraging well-established connections between Dirichlet and\nMultivariate Gamma distributions, a novel class of estimators for the latter is\nintroduced, referred to as \"Dirichlet-based moment-type estimators\". The\ngeneral asymptotic variance-covariance matrix form for this estimator class is\nderived. To facilitate the application of these innovative estimators, an R\npackage called estimators is developed and made publicly available.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.15025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents new closed-form estimators for the Dirichlet and the Multivariate Gamma distribution families, whose maximum likelihood estimator cannot be explicitly derived. The methodology builds upon the score-adjusted estimators for the Beta and Gamma distributions, extending their applicability to the Dirichlet and Multivariate Gamma distributions. Expressions for the asymptotic variance-covariance matrices are provided, demonstrating the superior performance of score-adjusted estimators over the traditional moment ones. Leveraging well-established connections between Dirichlet and Multivariate Gamma distributions, a novel class of estimators for the latter is introduced, referred to as "Dirichlet-based moment-type estimators". The general asymptotic variance-covariance matrix form for this estimator class is derived. To facilitate the application of these innovative estimators, an R package called estimators is developed and made publicly available.
Dirichlet分布和多元伽玛分布的矩型估计
本文针对Dirichlet分布族和多元伽玛分布族的最大似然估计量不能显式导出的问题,提出了新的封闭估计量。该方法建立在Beta和Gamma分布的分数调整估计器上,扩展了它们对Dirichlet和多元Gamma分布的适用性。给出了渐近方差-协方差矩阵的表达式,证明了分数调整估计量优于传统矩量的性能。利用Dirichlet和多元伽玛分布之间建立的良好联系,介绍了后者的一类新的估计量,称为“基于Dirichlet的矩型估计量”。导出了该类估计量的一般渐近方差-协方差矩阵形式。为了促进这些创新估算器的应用,开发了一个名为estimators的Rpackage,并使其公开可用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信