Low-Degree Hardness of Detection for Correlated Erdős-Rényi Graphs

Jian Ding, Hang Du, Zhangsong Li
{"title":"Low-Degree Hardness of Detection for Correlated Erdős-Rényi Graphs","authors":"Jian Ding, Hang Du, Zhangsong Li","doi":"arxiv-2311.15931","DOIUrl":null,"url":null,"abstract":"Given two Erd\\H{o}s-R\\'enyi graphs with $n$ vertices whose edges are\ncorrelated through a latent vertex correspondence, we study complexity lower\nbounds for the associated correlation detection problem for the class of\nlow-degree polynomial algorithms. We provide evidence that any\ndegree-$O(\\rho^{-1})$ polynomial algorithm fails for detection, where $\\rho$ is\nthe edge correlation. Furthermore, in the sparse regime where the edge density\n$q=n^{-1+o(1)}$, we provide evidence that any degree-$d$ polynomial algorithm\nfails for detection, as long as $\\log d=o\\big( \\frac{\\log n}{\\log nq} \\wedge\n\\sqrt{\\log n} \\big)$ and the correlation $\\rho<\\sqrt{\\alpha}$ where\n$\\alpha\\approx 0.338$ is the Otter's constant. Our result suggests that several\nstate-of-the-art algorithms on correlation detection and exact matching\nrecovery may be essentially the best possible.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.15931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given two Erd\H{o}s-R\'enyi graphs with $n$ vertices whose edges are correlated through a latent vertex correspondence, we study complexity lower bounds for the associated correlation detection problem for the class of low-degree polynomial algorithms. We provide evidence that any degree-$O(\rho^{-1})$ polynomial algorithm fails for detection, where $\rho$ is the edge correlation. Furthermore, in the sparse regime where the edge density $q=n^{-1+o(1)}$, we provide evidence that any degree-$d$ polynomial algorithm fails for detection, as long as $\log d=o\big( \frac{\log n}{\log nq} \wedge \sqrt{\log n} \big)$ and the correlation $\rho<\sqrt{\alpha}$ where $\alpha\approx 0.338$ is the Otter's constant. Our result suggests that several state-of-the-art algorithms on correlation detection and exact matching recovery may be essentially the best possible.
关联Erdős-Rényi图的低度检测硬度
给定两个Erd \H{o} s- r图,其$n$顶点的边通过潜在顶点对应关系相关联,我们研究了一类低次多项式算法的关联相关检测问题的复杂度下限。我们提供的证据表明,任何程度- $O(\rho^{-1})$多项式算法失败的检测,其中$\rho$是边缘相关。此外,在边缘密度$q=n^{-1+o(1)}$的稀疏状态下,我们提供证据表明,只要$\log d=o\big( \frac{\log n}{\log nq} \wedge\sqrt{\log n} \big)$和相关性$\rho<\sqrt{\alpha}$ ($\alpha\approx 0.338$是Otter的常数),任何程度- $d$多项式算法都无法进行检测。我们的结果表明,几种最先进的相关检测和精确匹配恢复算法可能是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信