{"title":"Large Sample Properties of Entropy Balancing Estimators of Average Causal Effects","authors":"David Källberg, Ingeborg Waernbaum","doi":"10.1016/j.ecosta.2023.11.004","DOIUrl":null,"url":null,"abstract":"<p>Weighting methods are used in observational studies to adjust for covariate imbalances between treatment and control groups. Entropy balancing (EB) is an alternative to inverse probability weighting with an estimated propensity score. The EB weights are constructed to satisfy balance constraints and optimized towards stability. Large sample properties of EB estimators of the average causal treatment effect, based on the Kullback-Leibler and quadratic Rényi relative entropies, are described. Additionally, estimators of their asymptotic variances are proposed. Even though the objective of EB is to reduce model dependence, the estimators are generally not consistent unless implicit parametric assumptions for the propensity score or conditional outcomes are met. The finite sample properties of the estimators are investigated through a simulation study. The average causal effect of smoking on blood lead levels is estimated using data from the National Health and Nutrition Examination Survey.</p>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"63 6","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ecosta.2023.11.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Weighting methods are used in observational studies to adjust for covariate imbalances between treatment and control groups. Entropy balancing (EB) is an alternative to inverse probability weighting with an estimated propensity score. The EB weights are constructed to satisfy balance constraints and optimized towards stability. Large sample properties of EB estimators of the average causal treatment effect, based on the Kullback-Leibler and quadratic Rényi relative entropies, are described. Additionally, estimators of their asymptotic variances are proposed. Even though the objective of EB is to reduce model dependence, the estimators are generally not consistent unless implicit parametric assumptions for the propensity score or conditional outcomes are met. The finite sample properties of the estimators are investigated through a simulation study. The average causal effect of smoking on blood lead levels is estimated using data from the National Health and Nutrition Examination Survey.
期刊介绍:
Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.