{"title":"Near-Optimal Lower Bounds on Quantifier Depth and Weisfeiler–Leman Refinement Steps","authors":"Christoph Berkholz, Jakob Nordström","doi":"https://dl.acm.org/doi/10.1145/3195257","DOIUrl":null,"url":null,"abstract":"<p>We prove near-optimal trade-offs for quantifier depth (also called quantifier rank) versus number of variables in first-order logic by exhibiting pairs of <i>n</i>-element structures that can be distinguished by a <i>k</i>-variable first-order sentence but where every such sentence requires quantifier depth at least <i>n</i><sup><i>Ω</i>(<i>k</i>/log <i>k</i>)</sup>. Our trade-offs also apply to first-order counting logic, and by the known connection to the <i>k</i>-dimensional Weisfeiler–Leman algorithm imply near-optimal lower bounds on the number of refinement iterations. </p><p>A key component in our proof is the hardness condensation technique introduced by [Razborov ’16] in the context of proof complexity. We apply this method to reduce the domain size of relational structures while maintaining the minimal quantifier depth needed to distinguish them in finite variable logics.</p>","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"11 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3195257","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
We prove near-optimal trade-offs for quantifier depth (also called quantifier rank) versus number of variables in first-order logic by exhibiting pairs of n-element structures that can be distinguished by a k-variable first-order sentence but where every such sentence requires quantifier depth at least nΩ(k/log k). Our trade-offs also apply to first-order counting logic, and by the known connection to the k-dimensional Weisfeiler–Leman algorithm imply near-optimal lower bounds on the number of refinement iterations.
A key component in our proof is the hardness condensation technique introduced by [Razborov ’16] in the context of proof complexity. We apply this method to reduce the domain size of relational structures while maintaining the minimal quantifier depth needed to distinguish them in finite variable logics.
期刊介绍:
The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining