{"title":"Robustly Learning General Mixtures of Gaussians","authors":"Allen Liu, Ankur Moitra","doi":"https://dl.acm.org/doi/10.1145/3583680","DOIUrl":null,"url":null,"abstract":"<p>This work represents a natural coalescence of two important lines of work — learning mixtures of Gaussians and algorithmic robust statistics. In particular, we give the first provably robust algorithm for learning mixtures of any constant number of Gaussians. We require only mild assumptions on the mixing weights and that the total variation distance between components is bounded away from zero. At the heart of our algorithm is a new method for proving a type of dimension-independent polynomial identifiability — which we call robust identifiability — through applying a carefully chosen sequence of differential operations to certain generating functions that not only encode the parameters we would like to learn but also the system of polynomial equations we would like to solve. We show how the symbolic identities we derive can be directly used to analyze a natural sum-of-squares relaxation.</p>","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"54 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3583680","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This work represents a natural coalescence of two important lines of work — learning mixtures of Gaussians and algorithmic robust statistics. In particular, we give the first provably robust algorithm for learning mixtures of any constant number of Gaussians. We require only mild assumptions on the mixing weights and that the total variation distance between components is bounded away from zero. At the heart of our algorithm is a new method for proving a type of dimension-independent polynomial identifiability — which we call robust identifiability — through applying a carefully chosen sequence of differential operations to certain generating functions that not only encode the parameters we would like to learn but also the system of polynomial equations we would like to solve. We show how the symbolic identities we derive can be directly used to analyze a natural sum-of-squares relaxation.
期刊介绍:
The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining