{"title":"On the Descriptive Complexity of Temporal Constraint Satisfaction Problems","authors":"Manuel Bodirsky, Jakub Rydval","doi":"https://dl.acm.org/doi/10.1145/3566051","DOIUrl":null,"url":null,"abstract":"<p>Finite-domain constraint satisfaction problems are either solvable by Datalog or not even expressible in fixed-point logic with counting. The border between the two regimes can be described by a universal-algebraic minor condition. For infinite-domain constraint satisfaction problems (CSPs), the situation is more complicated even if the template structure of the CSP is model-theoretically tame. We prove that there is no Maltsev condition that characterizes Datalog already for the CSPs of first-order reducts of (ℚ;<); such CSPs are called <i>temporal CSPs</i> and are of fundamental importance in infinite-domain constraint satisfaction. Our main result is a complete classification of temporal CSPs that can be expressed in one of the following logical formalisms: Datalog, fixed-point logic (with or without counting), or fixed-point logic with the mod-2 rank operator. The classification shows that many of the equivalent conditions in the finite fail to capture expressibility in Datalog or fixed-point logic already for temporal CSPs.</p>","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"42 9-10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3566051","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Finite-domain constraint satisfaction problems are either solvable by Datalog or not even expressible in fixed-point logic with counting. The border between the two regimes can be described by a universal-algebraic minor condition. For infinite-domain constraint satisfaction problems (CSPs), the situation is more complicated even if the template structure of the CSP is model-theoretically tame. We prove that there is no Maltsev condition that characterizes Datalog already for the CSPs of first-order reducts of (ℚ;<); such CSPs are called temporal CSPs and are of fundamental importance in infinite-domain constraint satisfaction. Our main result is a complete classification of temporal CSPs that can be expressed in one of the following logical formalisms: Datalog, fixed-point logic (with or without counting), or fixed-point logic with the mod-2 rank operator. The classification shows that many of the equivalent conditions in the finite fail to capture expressibility in Datalog or fixed-point logic already for temporal CSPs.
期刊介绍:
The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining