Abnormal sample detection based on robust Mahalanobis distance estimation in adversarial machine learning

IF 0.3 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Wan Tian, Lingyue Zhang, Hengjian Cui
{"title":"Abnormal sample detection based on robust Mahalanobis distance estimation in adversarial machine learning","authors":"Wan Tian, Lingyue Zhang, Hengjian Cui","doi":"10.4310/23-sii818","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of abnormal sample detection in deep learning-based computer vision, focusing on two types of abnormal samples: outlier samples and adversarial samples. The presence of these abnormal samples can significantly degrade the performance and robustness of deep learning models, posing security risks in critical areas. To address this, we propose a method that combines robust Mahalanobis distance (RMD) estimation with a pretrained convolutional neural networks (CNNs) model. The RMD estimation involves using minimum covariance matrix determinant (MCD), $T$-type, and $S$ estimators. Furthermore, we theoretically analyze the breakdown point and influence function of the $T$-type estimator. To evaluate the effectiveness and robustness of our method, we utilize public datasets, CNN models, and adversarial sample generation algorithms commonly employed in the field. The experimental results demonstrate the effectiveness of our algorithm in detecting abnormal samples.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"66 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/23-sii818","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of abnormal sample detection in deep learning-based computer vision, focusing on two types of abnormal samples: outlier samples and adversarial samples. The presence of these abnormal samples can significantly degrade the performance and robustness of deep learning models, posing security risks in critical areas. To address this, we propose a method that combines robust Mahalanobis distance (RMD) estimation with a pretrained convolutional neural networks (CNNs) model. The RMD estimation involves using minimum covariance matrix determinant (MCD), $T$-type, and $S$ estimators. Furthermore, we theoretically analyze the breakdown point and influence function of the $T$-type estimator. To evaluate the effectiveness and robustness of our method, we utilize public datasets, CNN models, and adversarial sample generation algorithms commonly employed in the field. The experimental results demonstrate the effectiveness of our algorithm in detecting abnormal samples.
对抗机器学习中基于鲁棒马氏距离估计的异常样本检测
本文研究了基于深度学习的计算机视觉中的异常样本检测问题,重点研究了异常样本的两种类型:离群样本和对抗样本。这些异常样本的存在会显著降低深度学习模型的性能和鲁棒性,在关键领域带来安全风险。为了解决这个问题,我们提出了一种将鲁棒马氏距离(RMD)估计与预训练卷积神经网络(cnn)模型相结合的方法。RMD估计包括使用最小协方差矩阵行列式(MCD)、$T$型和$S$估计器。进一步,从理论上分析了T型估计器的击穿点和影响函数。为了评估我们方法的有效性和鲁棒性,我们使用了公共数据集、CNN模型和该领域常用的对抗性样本生成算法。实验结果证明了该算法在异常样本检测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics and Its Interface
Statistics and Its Interface MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
0.90
自引率
12.50%
发文量
45
审稿时长
6 months
期刊介绍: Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信