{"title":"Robust and powerful gene-environment interaction tests using rare genetic variants in case-control studies","authors":"Yanan Zhao, Hong Zhang","doi":"10.4310/23-sii800","DOIUrl":null,"url":null,"abstract":"Many association analysis methods have been developed to detect disease related rare genetic variants or gene-environment interactions. Most of them are based on prospectively likelihood, so they are robust but might not be powerful enough. On the other hand, retrospective likelihood based methods assuming gene-environment independence can effectively improve the association test power, but they suffer from type‑I error rate inflation if the independence assumption is violated. The aim of this paper is to develop novel test methods to balance power and robustness by appropriately weighting the above retrospective likelihood based tests and the existing prospective likelihood based tests. The desired finite sample performances of the proposed methods are demonstrated through simulation studies and the application to a real dataset.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"39 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/23-sii800","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many association analysis methods have been developed to detect disease related rare genetic variants or gene-environment interactions. Most of them are based on prospectively likelihood, so they are robust but might not be powerful enough. On the other hand, retrospective likelihood based methods assuming gene-environment independence can effectively improve the association test power, but they suffer from type‑I error rate inflation if the independence assumption is violated. The aim of this paper is to develop novel test methods to balance power and robustness by appropriately weighting the above retrospective likelihood based tests and the existing prospective likelihood based tests. The desired finite sample performances of the proposed methods are demonstrated through simulation studies and the application to a real dataset.
期刊介绍:
Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.