{"title":"Effects of cyclic traffic loads and seawater erosion on suffusion of crushed calcareous sands","authors":"Hao Xiong, Rui Tang, Zhen-yu Yin, Hanqing Chen, Zhimin Zhang, Yuanyi Qiu, Runqi Zhang","doi":"10.1615/intjmultcompeng.2023049633","DOIUrl":null,"url":null,"abstract":"Calcareous sands, in contrast to ordinary terrestrial source sands, are characterized by their propensity for fragmentation. This leads to the fracturing of calcareous sands within the foundation under the impact of traffic loads. The crushed calcareous sands then experience suffusion due to cyclic wave action, potentially causing foundation settlement. However, limited research has been conducted on the effects of varying load frequencies and magnitudes on road foundations subjected to cyclic traffic loads. In this study, a series of numerical case studies employing the CFD-DEM method are conducted. The macroscopic and microscopic effects of load magnitude and frequency on fines loss mass, fines loss rate, soil surface displacement, and microstructure are analyzed. The results indicate that as the traffic load magnitude increases and frequency decreases, fines loss mass and volumetric strain of the soil decrease, reducing the suffusion effect on the foundation. These findings provide valuable insights for the development of micromechanical constitutive models for calcareous sands and the design of transportation infrastructure.","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":"40 12","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Multiscale Computational Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/intjmultcompeng.2023049633","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Calcareous sands, in contrast to ordinary terrestrial source sands, are characterized by their propensity for fragmentation. This leads to the fracturing of calcareous sands within the foundation under the impact of traffic loads. The crushed calcareous sands then experience suffusion due to cyclic wave action, potentially causing foundation settlement. However, limited research has been conducted on the effects of varying load frequencies and magnitudes on road foundations subjected to cyclic traffic loads. In this study, a series of numerical case studies employing the CFD-DEM method are conducted. The macroscopic and microscopic effects of load magnitude and frequency on fines loss mass, fines loss rate, soil surface displacement, and microstructure are analyzed. The results indicate that as the traffic load magnitude increases and frequency decreases, fines loss mass and volumetric strain of the soil decrease, reducing the suffusion effect on the foundation. These findings provide valuable insights for the development of micromechanical constitutive models for calcareous sands and the design of transportation infrastructure.
期刊介绍:
The aim of the journal is to advance the research and practice in diverse areas of Multiscale Computational Science and Engineering. The journal will publish original papers and educational articles of general value to the field that will bridge the gap between modeling, simulation and design of products based on multiscale principles. The scope of the journal includes papers concerned with bridging of physical scales, ranging from the atomic level to full scale products and problems involving multiple physical processes interacting at multiple spatial and temporal scales. The emerging areas of computational nanotechnology and computational biotechnology and computational energy sciences are of particular interest to the journal. The journal is intended to be of interest and use to researchers and practitioners in academic, governmental and industrial communities.