A Small-Size 3d Object Detection Network for Analyzing the Sparsity of Raw Lidar Point Cloud

Pub Date : 2023-11-24 DOI:10.1007/s10946-023-10173-3
Bo Zhang, Haosen Wang, Suilian You, Chengfeng Bao, Shifeng Wang, Bo Lu, Jonghyuk Kim
{"title":"A Small-Size 3d Object Detection Network for Analyzing the Sparsity of Raw Lidar Point Cloud","authors":"Bo Zhang,&nbsp;Haosen Wang,&nbsp;Suilian You,&nbsp;Chengfeng Bao,&nbsp;Shifeng Wang,&nbsp;Bo Lu,&nbsp;Jonghyuk Kim","doi":"10.1007/s10946-023-10173-3","DOIUrl":null,"url":null,"abstract":"<div><p>LiDAR is one of the main sensors for 3D object detection in autonomous driving. LiDAR has the advantages of high precision and high resolution, but as the distance increases, the points it acquires become sparse, resulting in uneven sampling points and hindering the feature extraction of discrete objects. Current 3D object detection methods using LiDAR ignore the sparse features of the original LiDAR point cloud, resulting in low classification accuracy over small object detection, hindering the development of autonomous driving technology. To address this problem, we propose point cloud Sparse Detection Network (PCSD), an end-to-end two-stage 3D object detection framework. First, PCSD uses a data augmentation algorithm to preprocess the KITTI dataset, then uses voxel point centroids to locate voxel features, and then uses a point sparsity-aware RoI grid pooling module to aggregate local voxel features. Finally, we improve the confidence of the final bounding box by using voxel features with the original point cloud sparse features. Experimental evaluation on the challenging KITTI object detection benchmark shows significant improvements, especially in pedestrian and cyclist classification accuracy improved by 13.22% and 9.33%, respectively, demonstrating the feasibility and applicability of our work.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-023-10173-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

LiDAR is one of the main sensors for 3D object detection in autonomous driving. LiDAR has the advantages of high precision and high resolution, but as the distance increases, the points it acquires become sparse, resulting in uneven sampling points and hindering the feature extraction of discrete objects. Current 3D object detection methods using LiDAR ignore the sparse features of the original LiDAR point cloud, resulting in low classification accuracy over small object detection, hindering the development of autonomous driving technology. To address this problem, we propose point cloud Sparse Detection Network (PCSD), an end-to-end two-stage 3D object detection framework. First, PCSD uses a data augmentation algorithm to preprocess the KITTI dataset, then uses voxel point centroids to locate voxel features, and then uses a point sparsity-aware RoI grid pooling module to aggregate local voxel features. Finally, we improve the confidence of the final bounding box by using voxel features with the original point cloud sparse features. Experimental evaluation on the challenging KITTI object detection benchmark shows significant improvements, especially in pedestrian and cyclist classification accuracy improved by 13.22% and 9.33%, respectively, demonstrating the feasibility and applicability of our work.

分享
查看原文
用于分析原始激光雷达点云稀疏度的小尺寸三维目标检测网络
激光雷达是自动驾驶中3D物体检测的主要传感器之一。激光雷达具有高精度、高分辨率的优点,但随着距离的增加,其获取的点变得稀疏,导致采样点不均匀,阻碍了离散物体的特征提取。目前使用LiDAR的三维目标检测方法忽略了原始LiDAR点云的稀疏特征,导致小目标检测的分类精度较低,阻碍了自动驾驶技术的发展。为了解决这个问题,我们提出了点云稀疏检测网络(PCSD),这是一个端到端的两阶段3D目标检测框架。PCSD首先使用数据增强算法对KITTI数据集进行预处理,然后使用体素点质心定位体素特征,然后使用点稀疏感知的RoI网格池化模块对局部体素特征进行聚合。最后,利用体素特征与原始点云稀疏特征结合,提高最终边界框的置信度。在具有挑战性的KITTI目标检测基准上进行的实验评估表明,该方法有了显著的改进,特别是行人和骑自行车的人的分类准确率分别提高了13.22%和9.33%,证明了我们的工作的可行性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信